首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2471篇
  免费   60篇
  国内免费   60篇
测绘学   68篇
大气科学   390篇
地球物理   549篇
地质学   618篇
海洋学   631篇
天文学   186篇
综合类   37篇
自然地理   112篇
  2023年   5篇
  2022年   22篇
  2021年   37篇
  2020年   40篇
  2019年   49篇
  2018年   116篇
  2017年   111篇
  2016年   162篇
  2015年   78篇
  2014年   154篇
  2013年   216篇
  2012年   106篇
  2011年   145篇
  2010年   148篇
  2009年   149篇
  2008年   143篇
  2007年   138篇
  2006年   107篇
  2005年   106篇
  2004年   106篇
  2003年   67篇
  2002年   55篇
  2001年   49篇
  2000年   33篇
  1999年   32篇
  1998年   25篇
  1997年   20篇
  1996年   15篇
  1995年   12篇
  1994年   10篇
  1993年   10篇
  1992年   8篇
  1991年   10篇
  1990年   12篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   11篇
  1981年   2篇
  1980年   10篇
  1979年   5篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1973年   2篇
  1972年   3篇
排序方式: 共有2591条查询结果,搜索用时 11 毫秒
41.
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.  相似文献   
42.
The propagation of dense electron beams and the interaction with the ambient plasmas are studied by using two-dimensional electrostatic simulations. When the width of the beam is of the order of electron gyro-radius, the beam electrons move across the magnetic field lines and the beam-plasma interaction becomes prominent with the reduced beam density. When the width of the beam is of the order of ion gyro-radius, the propagation of beam electrons is possible only with the formation of the ion channel. However, since the time scale of the ionic motion is much longer than that of the electronic motion, most of the beam electrons return back to the original beam injection region  相似文献   
43.
Abstract— We report on studies of the concentrations of cosmogenic nuclides in the magnetic fraction of cosmic dust particles recovered from the South Pole Water Well (SPWW) and from Greenland. Our results confirm that cosmic dust material from these locations contains measurable amounts of cosmogenic nuclides. The Antarctic particles (and possibly those from Greenland as well) also contain minor amounts of solar Ne. Concentrations of cosmogenic nuclides are consistent with irradiation of this material as small objects in space, with exposure ages similar to the expected Poynting‐Robertson (P‐R) lifetimes of 50–200 kyr for particles 25–100 μm in size.  相似文献   
44.
45.
This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and ranging(LiDAR) digital elevation models(DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system(GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.  相似文献   
46.
47.
The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67?hr and $|\dot{P}| \leq1.6 \times10^{-9}\,{\rm s\,s^{-1}}$ . It is associated with the supernova remnant RCW?103 and is widely believed to be a ~2000?yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ~3000?km and the mass-accretion rate $\sim 10^{14}\,{\rm g\,s^{-1}}$ . This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ~1012?G and that a presence of $\gtrsim10^{-7}\,{\rm M_{\odot}}$ magnetic slab would be sufficient to explain the origin and current state of the pulsar.  相似文献   
48.
We investigated the velocity and temperature characteristics of an Ellerman bomb (EB) and its associated features based on observations made with the Fast Imaging Solar Spectrograph (FISS) and a broadband TiO filter of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. In the TiO images of the photospheric level, we found a granular cell expanding in two opposite directions near the site of the EB. When one end of this granule reached the EB site, the transverse speed of the tip of the expanding granule rapidly decreased and the EB brightened. The wings of the Hα profile of the EB indicated that the EB was blueshifted up to 7 km?s?1. About 260 s after the EB brightening, a surge was seen in absorption and varied from a blueshift of 20 km?s?1 to a redshift of 40 km?s?1 seen in the Hα and Ca ii 8542 Å lines. From the Doppler absorption width of the two lines determined by applying the cloud model, we estimated the mean temperature of the surge material to be about 29000 K and the mean speed of nonthermal motion to be about 11 km?s?1. We discuss the physical implications of our results in terms of magnetic reconnection and processes related to it.  相似文献   
49.
We present a 1.1 mm wavelength imaging survey covering 0.3 deg2 in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope, were centred on a prominent large-scale structure overdensity which includes a rich X-ray cluster at z ≈ 0.73. A total of 50 mm-galaxy candidates, with a significance ranging from 3.5 to 8.5σ, are extracted from the central 0.15 deg2 area which has a uniform sensitivity of ∼1.3 mJy beam−1. 16 sources are detected with S/N ≥ 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (deboosted) fluxes ≥5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically obscured stars, then these bright AzTEC sources have far-infrared luminosities  >6 × 1012 L  and star formation rates  >1100 M yr−1  . Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger scale overdensity. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterization of the source catalogue, including the completeness, flux deboosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24-μm data and radio data with this AzTEC map of the COSMOS field.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号