首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   54篇
  国内免费   22篇
测绘学   25篇
大气科学   132篇
地球物理   280篇
地质学   360篇
海洋学   107篇
天文学   174篇
综合类   9篇
自然地理   101篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   17篇
  2020年   26篇
  2019年   30篇
  2018年   34篇
  2017年   49篇
  2016年   36篇
  2015年   37篇
  2014年   47篇
  2013年   73篇
  2012年   38篇
  2011年   69篇
  2010年   56篇
  2009年   79篇
  2008年   68篇
  2007年   61篇
  2006年   56篇
  2005年   39篇
  2004年   43篇
  2003年   34篇
  2002年   24篇
  2001年   19篇
  2000年   24篇
  1999年   18篇
  1998年   15篇
  1997年   19篇
  1996年   17篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1967年   1篇
排序方式: 共有1188条查询结果,搜索用时 609 毫秒
181.
River discharge and nutrient measurements are subject to aleatory and epistemic uncertainties. In this study, we present a novel method for estimating these uncertainties in colocated discharge and phosphorus (P) measurements. The “voting point”‐based method constrains the derived stage‐discharge rating curve both on the fit to available gaugings and to the catchment water balance. This helps reduce the uncertainty beyond the range of available gaugings and during out of bank situations. In the example presented here, for the top 5% of flows, uncertainties are shown to be 139% using a traditional power law fit, compared with 40% when using our updated “voting point” method. Furthermore, the method is extended to in situ and lab analysed nutrient concentration data pairings, with lower uncertainties (81%) shown for high concentrations (top 5%) than when a traditional regression is applied (102%). Overall, for both discharge and nutrient data, the method presented goes some way to accounting for epistemic uncertainties associated with nonstationary physical characteristics of the monitoring site.  相似文献   
182.
Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 re-analysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.  相似文献   
183.
Measurements of oxygen and hydrogen isotopes in plant xylem water (2H, 18O) have helped to redefine conceptual and numerical models of the hydrological cycle and understand how plants compete for subsurface water. Recent experiments have shown that Cryogenic Vacuum Extraction (CVE) of plant xylem water can result in a δ2H bias. We tested if CVE δ2H-biases varied significantly across seven foundational northeastern US forest trees with a series of tree core rehydration experiments. Our analysis demonstrated that CVE δ2H-biases were well predicted by sample gravimetric water content and varied significantly with tree species identity. We show that species-level δ2H-bias corrections can result in substantially different understandings of plant water uptake and transpiration versus uncorrected data or generic bias corrections. This research demonstrates an urgent need for the critical evaluation of CVE for plant water extraction. In the absence of a stronger understanding of CVE δ2H-biases, we recommend that xylem water δ2H observations should not be used in plant water uptake studies.  相似文献   
184.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   
185.
186.
In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen (Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr?1) > upland hilltop (0.29 mm hr?1) > margin (0.23 mm hr?1) > peatland (0.10 mm hr?1); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ18O) and hydrogen (δ2H) isotopes where upland xylem and peat core signatures were ?10.0‰ and ?117.8‰ and ?9.2‰ and ?114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.  相似文献   
187.
Groundwater samples were collected from 11 springs in Ash Meadows National Wildlife Refuge in southern Nevada and seven springs from Death Valley National Park in eastern California. Concentrations of the major cations (Ca, Mg, Na and K) and 45 trace elements were determined in these groundwater samples. The resultant data were subjected to evaluation via the multivariate statistical technique principal components analysis (PCA), to investigate the chemical relationships between the Ash Meadows and Death Valley spring waters, to evaluate whether the results of the PCA support those of previous hydrogeological and isotopic studies and to determine if PCA can be used to help delineate potential groundwater flow patterns based on the chemical compositions of groundwaters. The results of the PCA indicated that groundwaters from the regional Paleozoic carbonate aquifers (all of the Ash Meadows springs and four springs from the Furnace Creek region of Death Valley) exhibited strong statistical associations, whereas other Death Valley groundwaters were chemically different. The results of the PCA support earlier studies, where potentiometric head levels, δ18O and δD, geological relationships and rare earth element data were used to evaluate groundwater flow, which suggest groundwater flows from Ash Meadows to the Furnace Creek springs in Death Valley. The PCA suggests that Furnace Creek groundwaters are moderately concentrated Ash Meadows groundwater, reflecting longer aquifer residence times for the Furnace Creek groundwaters. Moreover, PCA indicates that groundwater may flow from springs in the region surrounding Scotty's Castle in Death Valley National Park, to a spring discharging on the valley floor. The study indicates that PCA may provide rapid and relatively cost‐effective methods to assess possible groundwater flow regimes in systems that have not been previously investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
188.
This paper develops a conceptual model and an indicator system for measuring economic resilience of resource-based cities based on the theory of evolutionary resilience and the related concepts of persistence, adaptation, and transformation. Nineteen resource- based cities in Northeast China were analyzed using the indicator system. The results showed that Liaoning and Jilin provinces had higher economic resilience than Heilongjiang Province. Panjin, Benxi, and Anshan in Liaoning Province were the top three cities, while Shuangyashan and other coal-based cities in Heilongjiang Province ranked last. Metals- and petroleum-based cities had significantly higher resilience than coal-based cities. The differences in persistence, adaptability, transformation, and resilience among resource-based cities decreased since the introduction of the Northeast Revitalization Strategy in 2003. Forestry-based cities improved the most in terms of resilience, followed by metals-based and multiple-resource cities; however, resilience dropped for coal-based cities, and petroleum-based cities falling the most. The findings illustrate the importance and the way to develop a differentiated approach to improve resilience among resource-based cities.  相似文献   
189.
Biophysical and biochemical plant foliage parameters play a key role in assessing vegetation health. Those plant parameters determine the spectral reflectance and transmittance properties of vegetation; therefore, hyperspectral remote sensing, particularly imaging spectroscopy, can provide estimates of leaf and canopy chemical properties. Based on the relationship between spectral response and biochemical/biophysical properties of the leaves and canopies, the PROSPECT radiative transfer model simulates the interaction of light with leaves. In this study, more than 1100 leaf samples from the Amazon forest of Ecuador were collected at several study sites, some of which are affected by petroleum pollution, and across the vertical profile of the forest. For every sample, field spectroscopy at leaf level was conducted with a spectroradiometer. The goal of this study was to assess leaf optical properties of polluted and unpolluted rainforest canopies across the vertical profile and identify vegetation stress expressed in changes of biophysical and biochemical properties of vegetation. An ANOVA followed by Holme’s multiple comparisons of means and a principal component analysis showed that photosynthetic pigments, chlorophyll and carotenoids have significantly lower levels across the vertical profile of the forest, particularly in sites affected by petroleum pollution. On the other hand, foliar water content showed significantly higher levels in the polluted site. Those findings are symptoms of vegetation stress caused by reduced photosynthetic activity and consequently decreased transpiration and water-use efficiency of the plants. Cross-comparison between SPAD-502 chlorophyll content meter index and chlorophyll content showed strong positive correlation coefficients (r = 0.71 and r 2 = 0.51) which suggests that using the SPAD-502 chlorophyll index itself is sensitive enough to detect vegetation stress in a multispecies tropical forest. Therefore, the SPAD-502 can be used to assess chlorophyll content of vegetation across polluted and non-polluted sites at different canopy layers. The results presented in this paper contribute to the very limited literature on field spectroscopy and radiative transfer models applied to the vertical profile of the Amazon forest.  相似文献   
190.
A conventional sequencing batch reactor (SBR) was successfully transformed to a membrane bioreactor (MBR) at an Indian casino resort and hotel, Santa Ynez, California. The technical difficulties from the existing process at the site including a 3-mm screening unit, SBR biological tanks, and sand filtration were relieved of by new biological membrane technology. As the hotel and its vicinity expanded, the existing SBR was not able to treat an increased flow, which was major driving force for such membrane-upgraded project. In addition, as the area was in a high drought zone, without meeting the purpose of water reuse, new hotel expansion was not permitted. New membrane process was designed and built with new 2-mm screening unit, pre-anoxic, oxic (or aerobic), post-anoxic, and MBR tanks along with UV disinfection. The retrofitting work was conducted, minimizing a major revision on the existing SBR structure and its civil work. Therefore, the new packaged system has brought a number of benefits to the customer, thereby utilizing reclaimed water highly meeting the California Code of Regulations (CCR) Title 22 requirements. The reclaimed water goes to toilet water, cooling tower, and irrigation. This study details how such process transformation was technically finished and would help other similar cases in terms of retrofitting exiting biological process to a membrane application without a major civil construction. The cost analysis including capital, operation and maintenance (O&M) costs was included so that it will be practical to ones who will conduct future similar projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号