首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   54篇
  国内免费   22篇
测绘学   25篇
大气科学   132篇
地球物理   280篇
地质学   360篇
海洋学   107篇
天文学   174篇
综合类   9篇
自然地理   101篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   17篇
  2020年   26篇
  2019年   30篇
  2018年   34篇
  2017年   49篇
  2016年   36篇
  2015年   37篇
  2014年   47篇
  2013年   73篇
  2012年   38篇
  2011年   69篇
  2010年   56篇
  2009年   79篇
  2008年   68篇
  2007年   61篇
  2006年   56篇
  2005年   39篇
  2004年   43篇
  2003年   34篇
  2002年   24篇
  2001年   19篇
  2000年   24篇
  1999年   18篇
  1998年   15篇
  1997年   19篇
  1996年   17篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1967年   1篇
排序方式: 共有1188条查询结果,搜索用时 343 毫秒
191.
This contribution addresses two developing areas of sediment fingerprinting research. Specifically, how to improve the temporal resolution of source apportionment estimates whilst minimizing analytical costs and, secondly, how to consistently quantify all perceived uncertainties associated with the sediment mixing model procedure. This first matter is tackled by using direct X‐ray fluorescence spectroscopy (XRFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses of suspended particulate matter (SPM) covered filter papers in conjunction with automatic water samplers. This method enables SPM geochemistry to be quickly, accurately, inexpensively and non‐destructively monitored at high‐temporal resolution throughout the progression of numerous precipitation events. We then employed a Bayesian mixing model procedure to provide full characterization of spatial geochemical variability, instrument precision and residual error to yield a realistic and coherent assessment of the uncertainties associated with source apportionment estimates. Applying these methods to SPM data from the River Wensum catchment, UK, we have been able to apportion, with uncertainty, sediment contributions from eroding arable topsoils, damaged road verges and combined subsurface channel bank and agricultural field drain sources at 60‐ and 120‐minute resolution for the duration of five precipitation events. The results presented here demonstrate how combining Bayesian mixing models with the direct spectroscopic analysis of SPM‐covered filter papers can produce high‐temporal resolution source apportionment estimates that can assist with the appropriate targeting of sediment pollution mitigation measures at a catchment level. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
192.
Glacier and permafrost hazards such as glacial‐lake outburst floods and rock–ice avalanches cause significant socio‐economic damages worldwide, and these processes may increase in frequency and magnitude if the atmospheric temperature rises. In the extratropical Andes nearly 200 human deaths were linked to these processes during the twentieth century. We analysed bibliographical sources and satellite images to document the glacier and permafrost dynamics that have caused socio‐economic damages in this region in historic time (including glacial lake outburst floods, ice and rock–ice avalanches and lahars) to unravel their causes and geomorphological impacts. In the extratropical Andes, at least 15 ice‐dammed lakes and 16 moraine‐dammed lakes have failed since the eighteenth century, causing dozens of floods. Some floods rank amongst the largest events ever recorded (5000 × 106 m3 and 229 × 106 m3, respectively). Outburst flood frequency has increased in the last three decades, partially as a consequence of long‐term (decades to centuries) climatic changes, glaciers shrinkage, and lake growth. Short‐term (days to weeks) meteorological conditions (i.e. intense and/or prolonged rainfall and high temperature that increased meltwater production) have also triggered outburst floods and mass movements. Enormous mass failures of glaciers and permafrost (> 10 × 106 m3) have impacted lakes, glaciers, and snow‐covered valleys, initiating chain reactions that have ultimately resulted in lake tsunamis and far‐reaching (> 50 km) flows. The eruption of ice‐covered volcanoes has also caused dozens of damaging lahars with volumes up to 45 × 106 m3. Despite the importance of these events, basic information about their occurrence (e.g. date, causes, and geomorphological impact), which is well established in other mountain ranges, is absent in the extratropical Andes. A better knowledge of the processes involved can help to forecast and mitigate these events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
193.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   
194.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
195.
Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick “C” sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.  相似文献   
196.
Road-deposited sediment (RDS) is an accumulation of particulates upon street surfaces in urban centres. It is commonly highly contaminated and has major potential impacts upon surface water quality and human health, as well as becoming a waste material upon street sweeping. Although significant research has been undertaken upon the fine fraction within these systems, there is a lack of detailed, high-resolution grain-specific mineralogical and chemical data for the coarser fractions, which contain the bulk of the contamination by mass. The study reported here utilizes backscatter electron microscopic, electron microprobe and Raman spectroscopic analysis to provide novel data on RDS material from Manchester, UK, with significant implications for the improved understanding of source discrimination and contaminant metal speciation. The RDS samples studied are highly heterogeneous and the abundant nature of anthropogenic grains is particularly apparent. The RDS material has been found to be composed of a number of grain types: (i) silicate and alumino-silicate grains derived from a wide range of sources; (ii) iron oxide grains derived from the corrosion of galvanized steel; (iii) iron-rich glass grains derived as slag material from metal and waste processing activities and (iv) spherical Fe oxide and Fe-rich glass grains derived from high temperature combustion processes. Elemental metallic grains (Fe, Cu, Pb) are also present in minor amounts.  相似文献   
197.
Water samples were analyzed for DOC and trace metals from Bagmati River within Kathmandu valley, Nepal, to understand the variation trends of DOC and trace metals and their relationship along the drainage network. The variability in organic matter and wastewater input within the Bagmati drainage basin appeared to control DOC and most of the trace metal concentration. The large input of organic matter and wastewater creates anoxic condition by consuming dissolved oxygen and releasing higher concentrations of DOC, trace elements such as nickel, arsenic, barium, cadmium, and copper with downstream distance. Concentrations of DOC and trace metals like barium and zinc showed strong relationships with human population density and suggest that human activities have strong control on these parameters along the drainage network. The DOC and most of the trace metal concentration increased with downstream distance and appeared to be directly associated with human activities. The variation trends of most of the trace metals appeared to be the same; however, concentration varied widely. Inputs of organic matter and wastewater due to human activities appeared directly to be associated for the variation of DOC and trace metals along the Bagmati drainage network within Kathmandu valley.  相似文献   
198.
The latitudinal variation of Saturn’s tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet’s nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn’s cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn’s NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck).  相似文献   
199.
Chemistry on the icy surface of Europa is heavily influenced by the incident energetic particle flux from the jovian magnetosphere. The majority (>75%) of this energy is in the form of high energy electrons (extending to >10 MeV). We have simulated the electron irradiation environment of Europa with a vacuum system containing a high-energy electron gun for irradiation of ice samples formed on a gold mirror cooled with a cryostat. Pure water films of ∼2.6 μm thickness were grown at 100 K and then either cooled (to 80 K), warmed (to 120 K) or left at 100 K and subsequently irradiated with 10 keV electrons. The production of hydrogen peroxide (H2O2) was monitored by observation of the 2850 cm−1 (3.5 μm) band. Equilibrium concentrations of H2O2, in units of percent by number H2O2 relative to water, were found to be 0.043% (80 K), 0.029% (100 K), and 0.0063% (120 K). These values are 33%, 22%, and 5%, respectively, that of the reported surface concentration on the leading hemisphere of Europa (Carlson, R.W., Anderson, M.S., Johnson, R.E., Smythe, W.D., Hendrix, A.R., Barth, C.A., et al. [1999]. Science 283(5410), 2062-2064) and less than the equilibrium concentrations formed by ion irradiation. In addition to the ice film temperature, the current of electrons was varied between different experiments to determine the production and destruction of H2O2 as a function of both electron flux and ice temperature. Variation in current was found to have little effect on the results other than accelerating arrival at radiolytic equilibrium.  相似文献   
200.
The distribution of adult Trichoptera in light traps was investigated alongside nine streams draining catchments under native forest, pine forest, or pasture near Hamilton, Waikato, New Zealand. The aim of the study was to determine the relationship between abundance, taxonomic richness, and community composition with respect to land use during summer, and to evaluate the use of adult Trichoptera compared with benthic invertebrates as potential bio‐indicators of the effectiveness of land‐management changes. Adult Trichoptera faunas alongside the native streams were dominated by Hydrobiosidae, Conoesucidae, and Helicopsychidae (each >10% of total Trichoptera numbers for at least two of the three sites), whereas Leptoceridae, Oeconescidae, and Hydrobiosidae were relatively abundant alongside at least two of the pine sites. Adult Trichoptera faunas at the pasture sites were strongly dominated by Hydroptilidae which made up 47–85% of numbers caught at all sites. The mean number of individuals and taxa caught in light traps increased from November to January and then declined in February for all land‐use types. Overall, total numbers and taxonomic richness of adult Trichoptera were significantly lower at the pine sites compared to the pasture or native sites. TWINSPAN classification of benthic invertebrates collected in November clearly differentiated sites based on land use for presence/absence and percentage abundance data. A similar pattern was evident for most sites when adult Trichoptera faunas were used for the four sampling dates combined, suggesting that light trapping has potential as a tool for bio‐monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号