首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   54篇
  国内免费   22篇
测绘学   25篇
大气科学   132篇
地球物理   280篇
地质学   360篇
海洋学   107篇
天文学   174篇
综合类   9篇
自然地理   101篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   17篇
  2020年   26篇
  2019年   30篇
  2018年   34篇
  2017年   49篇
  2016年   36篇
  2015年   37篇
  2014年   47篇
  2013年   73篇
  2012年   38篇
  2011年   69篇
  2010年   56篇
  2009年   79篇
  2008年   68篇
  2007年   61篇
  2006年   56篇
  2005年   39篇
  2004年   43篇
  2003年   34篇
  2002年   24篇
  2001年   19篇
  2000年   24篇
  1999年   18篇
  1998年   15篇
  1997年   19篇
  1996年   17篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1967年   1篇
排序方式: 共有1188条查询结果,搜索用时 125 毫秒
861.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   
862.
An 84 cm sediment core collected from the center of Devils Lake, North Dakota, was analyzed at 1-cm intervals for,210Pb,137Cs, sediment conductivity, the concentrations of, biogenic silica, total organic carbon, carbon to nitrogen ratio, and the carbon and nitrogen isotopic composition of the organic fraction. Variations in210Pb activities in the upper 20 centimeters indicate that sediment accumulations rates in Devils Lake are not constant, and that accumulation rates were highest during periods of high lake level. The mean sedimentation accumulation rate was calculated as 0.24 cm–1 yr. The137Cs profile is characterized by near-surface maximum concentrations, possibly the result of redistribution of137Cs during salinity excursions.Biogenic silica is strongly correlated to lake level in Devils Lake. Periods of low lake level (characterized by high sediment conductivity) correspond to low biogenic silica concentrations. The trends in biogenic silica are attributed to variations in diatom productivity in the lake and to variations in sediment accumulation rates. Based on biogenic silica content and the composition of organic matter in the sediment (total organic carbon, carbon:nitrogen ratio and the 13C and 15N composition of total organic matter), paleobiologic conditions of Devils Lake during low lake stands were characterized by, (1) decreased primary productivity, (2) decreased input of detrital organic matter, and (3) increased nitrogen availability.During the 350 years of sediment accumulation represented by the 84-cm sediment core Devils Lake has experienced two periods of sustained high lake level; one between about 130 and 170 years ago (1820 to 1860 A.D.) and the second between 270 and 310 years ago (1680 to 1720 A.D.). Devils Lake experienced a period of intense drying about 260 years ago (1720 A.D.).  相似文献   
863.
864.
Modeling was performed to simulate ground water flow through reactive barriers of lower hydraulic conductivity than the surrounding aquifer to determine the plume capture widths. As a plume approaches such a barrier, it spreads laterally. Therefore, to intercept an entire plume, the barrier must be wider than the upgradient width of the undisturbed plume. The results indicate that, for practical values of barrier thickness and plume width, hydraulic conductivities ten-fold less than that of the aquifer can be accommodated by making the width of the barrier approximately 20% greater than the upgradient width of the plume. Barrier hydraulic conductivities one-hundred-fold less than that of the aquifer may require barrier widths up to twice the width of the upgradient plume for plumes 100 feet wide (33 m) and as little as 1.1 times for plumes 1000 feet wide (325 m). The results presented here lend support to the view that novel emplacement methods that create zones of slightly lower hydraulic conductivity than the native aquifer may be viable alternatives to the excavation-and-backfill approaches which have thus far been used for installing permeable reactive barriers.  相似文献   
865.
866.
The 15N composition of seagrass and benthic macroalgae from shallow waters of Sarasota Bay was measured to determine if stable N isotopes can be used to trace stormwater N into macrophyte production within an urbanized estuary. Results show isotopically enriched macroalgae at the landward stations near creeks and bayous in the central Bay and in the southern portion of the Bay. A known sewage outfall at Whitaker Bayou resulted in δ 15NO3 values from 0 to +9‰. Isotopically enriched NH4 values in Phillippi Creek (+10 to +17‰) were similar to the stormwater 15NH4 values from the watershed (+7 to +18‰). Enriched N sources supported a significant portion of macroalgae N demands in the southern reaches of the Bay while isotopically depleted N sources (i.e., atmospheric deposition and/or fertilizers) appear to be more important for macroalgae in the northern portion of the Bay. Macroalgae were typically more enriched than seagrass and appear to be better indicators of anthropogenic loadings near creeks and bayous that receive large volumes of stormwater and other anthropogenic N sources. Historically, studies have used enriched 15N in macrophytes to infer wastewater influences. This study shows that stormwater N inputs need to be considered in nitrogen budgets for aquatic systems that show anthropogenic 15N enrichment.  相似文献   
867.
Recent Trends In Laurentian Great Lakes Ice Cover   总被引:3,自引:0,他引:3  
A 39-winter (1963–2001) record of annual maximum ice concentration (AMIC), the maximum fraction of lake surface area covered by ice each year, is analyzed for each Great Lake. Lake Erie has the largest median AMIC (94%) followed by Lakes Superior (80%), Huron(63%), Michigan (33%), and Ontario (21%). The frequency distributionof AMICs is negatively skewed for Lakes Superior and Erie and positively skewed for Lakes Michigan and Ontario. Temporal and spatial patterns of typical and extreme AMICs is presented within the context of long-term average air temperatures and lake bathymetry. The variation of spatially averaged ice concentration with discrete depth ranges are discussed for each lake for the upper and lower end of the typical range of AMIC values. In general, ice concentration decreases with increasing depth ranges for a given winter. A decrease in the gradient of ice concentration with depths was also observed with an increase in the AMIC from winter 1983 to winter 1984. A temporal trend in the AMICs supports the hypothesis of three ice cover regimes over the past 39 winters. Approximately 44% of the highest quartile (10 highest) AMICs for the Great Lakes occurred during the 6-winter period:1977–1982 providing evidence of a higher ice cover regime during thisperiod relative to the 14 winters before them (1963–1976) and the 19 winters after them (1983–2001). Winter 1998 established new low AMIC extremes,and the AMIC averaged over the 1998–2001 winters is the lowest for theperiod of record on four of the five Great Lakes. These recent trends taken together are noteworthy as they may be harbingers of a period of even lower AMICs in the 21st Century.  相似文献   
868.
869.
We herein report the results of a ?eld study that was designed to test the feasibility of using ground‐based LIDAR to map the topography of a sand dune in high spatial resolution. A portable Cyrax 2500 three‐dimensional (3D) laser scanner was used to digitally capture the topography of a barchan, roughly 4 m tall and 50 m long, located in the White Sands National Monument, New Mexico. We performed eleven scans around the barchan and obtained the elevation relative to the inter‐dune ?at at roughly 1/4 million points on the dune surface. The elevation point data were then interpolated to yield a continuous surface model of the dune topography with c. 10 cm spatial resolution and c. 6 mm position accuracy. The results from this ?eld study clearly demonstrate the potential of ground‐based LIDAR as a mapping tool for use in aeolian research and other earth science applications. The 3D surface model of the dune can describe the morphology with hitherto unprecedented detail. Moreover, the surface of the dune is mapped with a minimum of foot traf?c on the dune itself. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
870.
In this paper, we use a coupled biological/physical model to synthesize and understand observations taken during the US JGOFS Arabian Sea Process Study (ASPS). Its physical component is a variable-density, -layer model; its biological component consists of a set of advective–diffusive equations in each layer that determine nitrogen concentrations in four compartments, namely, nutrients, phytoplankton, zooplankton, and detritus. Solutions are compared to time series and cruise sections from the ASPS data set, including observations of mixed-layer thickness, chlorophyll concentrations, inorganic nitrogen concentrations, particulate nitrogen export flux, zooplankton biomass, and primary production. Through these comparisons, we adjust model parameters to obtain a “best-fit” main-run solution, identify key biological and physical processes, and assess model strengths and weaknesses.Substantial improvements in the model/data comparison are obtained by: (1) adjusting the turbulence-production coefficients in the mixed-layer model to thin the mixed layer; (2) increasing the detrital sinking and remineralization rates to improve the timing and amplitude of the model's export flux; and (3) introducing a parameterization of particle aggregation to lower phytoplankton concentrations in coastal upwelling regions.With these adjustments, the model captures many key aspects of the observed physical and biogeochemical variability in offshore waters, including the near-surface DIN and phytoplankton P concentrations, mesozooplankton biomass, and primary production. Nevertheless, there are still significant model/data discrepancies of P for most of the cruises. Most of them can be attributed to forcing or process errors in the physical model: inaccurate mixed-layer thicknesses, lack of mesoscale eddies and filaments, and differences in the timing and spatial extent of coastal upwelling. Relatively few are clearly related to the simplicity of the biological model, the model's overestimation of coastal P being the most obvious example. Overall, we conclude that future efforts to improve biogeochemical models of the Arabian Sea should focus on improving their physical component, ensuring that it represents the ocean's physical state as closely as possible. We believe that this conclusion applies to coupled biogeochemical modeling efforts in other regions as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号