首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1219篇
  免费   61篇
  国内免费   24篇
测绘学   25篇
大气科学   140篇
地球物理   298篇
地质学   431篇
海洋学   111篇
天文学   183篇
综合类   9篇
自然地理   107篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   17篇
  2020年   27篇
  2019年   30篇
  2018年   35篇
  2017年   54篇
  2016年   38篇
  2015年   40篇
  2014年   51篇
  2013年   79篇
  2012年   47篇
  2011年   73篇
  2010年   58篇
  2009年   79篇
  2008年   75篇
  2007年   61篇
  2006年   59篇
  2005年   42篇
  2004年   43篇
  2003年   40篇
  2002年   29篇
  2001年   27篇
  2000年   24篇
  1999年   20篇
  1998年   19篇
  1997年   22篇
  1996年   20篇
  1995年   22篇
  1994年   12篇
  1993年   14篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   12篇
  1982年   9篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1973年   3篇
排序方式: 共有1304条查询结果,搜索用时 15 毫秒
101.
The Waulsortian Limestone (Lower Carboniferous) of the southern Irish Midlands is dolomitized pervasively over a much larger region than previous studies have documented. This study indicates a complex, multistage, multiple fluid history for regional dolomitization. Partially and completely dolomitized sections of Waulsortian Limestones are characterized by finely crystalline (0·01–0·3 mm) planar dolomite. Planar replacive dolomite is commonly followed by coarse (≥0·5 mm) nonplanar replacive dolomite, and pervasive void‐filling saddle dolomite cement is frequently associated with Zn–Pb mineralization. Planar dolomite has average δ18O and δ13C values (‰ PDB) of –4·8 and 3·9 respectively. These are lower oxygen and slightly higher carbon isotope values than averages for marine limestones in the Waulsortian (δ18O=–2·2, δ13C=3·7). Mean C and O isotope values of planar replacive dolomite are also distinct from those of nonplanar and saddle dolomite cement (–7·0 and 3·3; –7·4 and 2·4 respectively). Fluid inclusions indicate a complex history involving at least three chemically and thermally distinct fluids during dolomite cementation. The petrography and geochemistry of planar dolomites are consistent with an early diagenetic origin, possibly in equilibrium with modified Carboniferous sea water. Where the Waulsortian was exposed to hydrothermal fluids (70–280 °C), planar dolomite underwent a neomorphic recrystallization to a coarser crystalline, planar and nonplanar dolomite characterized by lower δ18O values. Void‐filling dolomite cement is isotopically similar to nonplanar, replacive dolomite and reflects a similar origin from hydrothermal fluids. This history of multiple stages of dolomitization is significantly more complex than earlier models proposed for the Irish Midlands and provides a framework upon which to test competing models of regional vs. localized fluid flow.  相似文献   
102.
103.
The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semirigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used.Correspondence should be directed to Earle B. Amey, U.S. Geological Survey, National Center 983, Reston, Virginia 20192.  相似文献   
104.
Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay   总被引:1,自引:0,他引:1  
The scales on which phytoplankton biomass vary in response to variable nutrient inputs depend on the nutrient status of the plankton community and on the capacity of consumers to respond to increases in phytoplankton productivity. Overenrichment and associated declines in water quality occur when phytoplankton growth rate becomes nutrient-saturated, the production and consumption of phytoplankton biomass become uncoupled in time and space, and phytoplankton biomass becomes high and varies on scales longer than phytoplankton generation times. In Chesapeake Bay, phytoplankton growth rates appear to be limited by dissolved inorganic phosphorus (DIP) during spring when biomass reaches its annual maximum and by dissolved inorganic nitrogen (DIN) during summer when phytoplankton growth rates are highest. However, despite high inputs of DIN and dissolved silicate (DSi) relative to DIP (molar ratios of N∶P and Si∶P>100), seasonal accumulations of phytoplankton biomass within the salt-intruded-reach of the bay appear to be limited by riverine DIN supply while the magnitude of the spring diatom bloom is governed by DSi supply. Seasonal imbalances between biomass production and consumption lead to massive accumulations of phytoplankton biomass (often>1,000 mg Chl-a m?2) during spring, to spring-summer oxygen depletion (summer bottom water <20% saturation), and to exceptionally high levels of annual phytoplankton production (>400 g m?2 yr?1). Nitrogen-dependent seasonal accumulations of phytoplankton biomass and annual production occur as a consequence of differences in the rates and pathways of nitrogen and phosphorus cycling within the bay and underscore the importance of controlling nitrogen inputs to the mesohaline and lower reaches of the bay.  相似文献   
105.
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary—the upper Mainstem, the Patuxent Estuary, and the 01 Potomac Estuary—during 1985–1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads to the 01 Mainstem, Patuxent, and the Potomac were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Approximately 7–16% for the nitrogen load entered the head of each estuary as particulate matter in contrast to 48–69% for phosphorus. This difference is hypothesized to favor a greater loss of phosphorus than nitrogen through sedimentation and burial. This process could be important in driving estuarine nitrogen to phosphorus ratios above those of inputs. Water column TN: TP ratios in the tidal fresh, oligohaline, and mesohaline salinity zones of each estuary ranged from 56 to 82 in the Mainstem, 27 to 48 in the Patuxent, and 72 to 126 in the Potomac. A major storm event in the Potomac watershed was shown to greatly increase the particulate fraction of nitrogen and phosphorus and lower the TN:TP in the river-borne loads. The load during the month that contained this storm (November 1985) accounted for 11% of the nitrogen and 31% of the phosphorus that was delivered to the estuary by the Potomac River during the entire 60-month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region, indicating that these areas were sites of considerable internal recycling of nutrients to surface waters. The sedimentation of particulate nutrient loads in the upper reaches of the estuary is probably a major source of these recycled nutrients. A net sink of nitrate was indicated during summer. A combination of inputs and these internal recycling processes caused dissolved inorganic N to P ratios to approach 16:1 in the mesohaline zone of the Mainstem during late summer; this ratio was much higher at other times and in the lower salinity zones. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. Productivity was highest in spring and summer, accounting for approximately 33% and 44%, respectively, of the total annual productivity in this region. In the Patuxent and Potomac, the TN:TP ratios of external loads documented here are 2–4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios relative to Redfield proportions (16:1) now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied.  相似文献   
106.
As a part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Râmnicu-Vâlcea, Romania, through clear skies. We discuss the image reduction and analysis through two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of about 140 s. One series of images was taken through a 3.6 Å filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. Previous observations, described in Pasachoff et al. (2000), showed no evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity. We describe several improvements made over the 1998 eclipse that led to increased image clarity and sensitivity. The corona was brighter in 1999 with the solar maximum, further improving the data. We use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. A Monte Carlo model of the data suggests the presence of enhanced power, particularly in the 0.75–1.0 Hz range, and we conclude that MHD waves remain a viable method for coronal heating.  相似文献   
107.
We report the first spectroscopic detection of discrete ammonia ice clouds in the atmosphere of Jupiter, as discovered utilizing the Galileo Near-Infrared Mapping Spectrometer (NIMS). Spectrally identifiable ammonia clouds (SIACs) cover less than 1% of the globe, as measured in complete global imagery obtained in September 1996 during Galileo's second orbit. More than half of the most spectrally prominent SIACs reside within a small latitudinal band, extending from 2° to 7° N latitude, just south of the 5-μm hot spots. The most prominent of these are spatially correlated with nearby 5-μm-bright hot spots lying 1.5°-3.0° of latitude to the north: they reside over a small range of relative longitudes on the eastward side of hot spots, about 37% of the longitudinal distance to the next hot spot to the east. This strong correlation between the positions of hot spots and the most prominent equatorial SIACs suggests that they are linked by a common planetary wave. Good agreement is demonstrated between regions of condensation predicted by the Rossby wave model of A. J. Friedson and G. S. Orton (1999, Bull. Am. Astron. Assoc31, 1155-1156) and the observed longitudinal positions of fresh ammonia clouds relative to 5-μm hot spots. Consistency is also demonstrated between (1) the lifetime of particles as determined by the wave phase speed and cloud width and (2) the sedimentation time for 10-μm radius particles consistent with previously reported ammonia particle size by T. Y. Brooke et al. (1998, Icarus136, 1-13). A young age (<two days) for most SIAC cloud particles is indicated. To the south, the most prominent SIACs are located to the northwest of the Great Red Spot, in a region where a westward flow of jovian air, diverted approximately 10° of latitude northward by the Great Red Spot, encounters a large eastward flow. SIACs have been observed repeatedly by NIMS at this location during Galileo's first four years in Jupiter orbit. It is speculated that due to the three-dimensional interactions of these flows, relatively large amounts of ammonia gas are steadily transported from the sub-cloud troposphere (below the ∼600-mbar level) to the high troposphere, nearly continuously forming fresh ammonia ice clouds to the northwest of the Great Red Spot.  相似文献   
108.
109.
Lithium isotope fractionation in the southern Cascadia subduction zone   总被引:2,自引:0,他引:2  
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of δ7Li vary from + 0.9‰ to + 6.4‰ and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have δ7Li from + 2.8 to + 6.9‰ which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust.  相似文献   
110.
We examined the spatiotemporal patterns of fire in insular Southeast Asia from July 1996 to December 2001 using a set of consistent, nighttime fire observations provided by the Along Track Scanning Radiometer (ATSR) sensor. Monthly ATSR fire counts were analyzed relative to georeferenced climatic and land-cover data from a variety of sources. We found that fires were strongly correlated with Southern Oscillation Index (SOI) (r = ?0.75) and Niño 3.4 index (r = 0.72) in forested land-cover types within the equatorial belt (5.5°S–5.5°N). Cross-correlation analysis revealed that detrended SOI was modestly correlated (r = 0.42) with detrended monthly fire count with a positive lag of four months. However, our analysis also revealed that fire counts reached their maximum 6 months before the absolute maximum of SOI. Annual sums of SOI (∑SOI) and fire counts revealed linearity for ∑SOI≤ 0. Overall, the results suggest that ENSO indices may have limited predictive utility at a monthly time scale, but that temporal aggregation and additional fire observations may enhance our capacity to forecast fires in different cover types based on ENSO data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号