首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   9篇
  国内免费   5篇
测绘学   3篇
大气科学   15篇
地球物理   106篇
地质学   82篇
海洋学   60篇
天文学   46篇
综合类   1篇
自然地理   22篇
  2021年   2篇
  2020年   4篇
  2019年   11篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   12篇
  2013年   20篇
  2012年   14篇
  2011年   13篇
  2010年   21篇
  2009年   26篇
  2008年   16篇
  2007年   19篇
  2006年   21篇
  2005年   11篇
  2004年   13篇
  2003年   5篇
  2002年   6篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
  1963年   1篇
排序方式: 共有335条查询结果,搜索用时 468 毫秒
241.
To determine the second critical end point in silicate-H2O systems, a new method for the direct observations of immiscible fluids has been developed using a synchrotron X-ray radiography technique. High-pressure and high-temperature experiments were carried out with a Kawai-type, double-stage, multi-anvil high-pressure apparatus (SPEED-1500) installed at BL04B1, SPring-8, Japan. The Sr-plagioclase (SrAl2Si2O8)-H2O system was used as an illustrative example. A new sample container composed of a metal (Pt) tube with a pair of lids, made of single crystal diamonds, was used under pressures between 3.0 and 4.3 GPa, and temperatures up to ∼1600°C. The sample in the container could be directly observed through the diamond lids with X-ray radiography. At around 980 to 1060°C and pressures between 3.0 and 4.0 GPa, light gray spherical bubbles moving upward through the dark gray matrix were observed. The light gray spheres that absorb less X-rays represent an aqueous fluid, whereas the dark gray matrix represents a silicate melt. These two immiscible phases (aqueous fluid and silicate melt) were observed up to 4.0 GPa. At 4.3 GPa, no bubbles were observed. These observations suggest that the second critical end point in the Sr-plagioclase-H2O system occurs at around 4.2 ± 0.2 GPa and 1020 ± 50°C. Our new technique can be applied to the direct observations of various systems with two coexisting fluids under deep mantle conditions.  相似文献   
242.
243.
The 9 March 1957 Aleutian earthquake has been estimated as the third largest earthquake this century and has the longest aftershock zone of any earthquake ever recorded—1200 km. However, due to a lack of high-quality seismic data, the actual source parameters for this earthquake have been poorly determined. We have examined all the available waveform data to determine the seismic moment, rupture area, and slip distribution. These data include body, surface and tsunami waves. Using body waves, we have estimated the duration of significant moment release as 4 min. From surface wave analysis, we have determined that significant moment release occurred only in the western half of the aftershock zone and that the best estimate for the seismic moment is 50–100×1020 Nm. Using the tsunami waveforms, we estimated the source area of the 1957 tsunami by backward propagation. The tsunami source area is smaller than the aftershock zone and is about 850 km long. This does not include the Unalaska Island area in the eastern end of the aftershock zone, making this area a possible seismic gap and a possible site of a future large or great earthquake. We also inverted the tsunami waveforms for the slip distribution. Slip on the 1957 rupture zone was highest in the western half near the epicenter. Little slip occurred in the eastern half. The moment is estimated as 88×1020 Nm, orM w =8.6, making it the seventh largest earthquake during the period 1900 to 1993. We also compare the 1957 earthquake to the 1986 Andreanof Islands earthquake, which occurred within a segment of the 1957 rupture area. The 1986 earthquake represents a rerupturing of the major 1957 asperity.  相似文献   
244.
The diffusion coefficients of aquo metal ions (Mz+) and their EDTA complexes (M-EDTA(z−4)+) were compared to understand the effect of EDTA complexation on the diffusion of metal ions by the diffusion cell method for Co2+, Ga3+, Rb+, Sr2+, Ag+, Cd2+, Cs+, Th4+, , and trivalent lanthanides. Most studies about ionic diffusion in water have dealt with free ion (hydrated ion). In many cases, however, polyvalent ions are dissolved as complexed species in natural waters. Hence, we need to study the diffusion behavior of complexes in order to understand the diffusion phenomenon in natural aquifer and to measure speciation by diffusive gradient in thin films (DGT), which requires the diffusion coefficients of the species examined. For many ions, the diffusion coefficients of M-EDTA(z−4)+ are smaller than those of hydrated ions, but the diffusion coefficients of M-EDTA(z−4)+ are larger than those of hydrated ions for ions with high ionic potentials (Ga3+ and Th4+). As a result, the diffusion coefficients of EDTA complexes are similar among various metal ions. In other words, the diffusion of each ion loses its characteristics by the complexation with EDTA. Although the difference is subtle, it was also found that the diffusion coefficients of EDTA complexes increase as the ionic potential increases, which can be explained by the size of the EDTA complex of each metal ion.  相似文献   
245.
246.
A new U–Pb dating and oxygen isotope analysis of zircons collected from a granitic mylonite and an undeformed granite in the Kamioka area, in the Hida Belt of southwest Japan, was conducted using a sensitive high‐resolution ion microprobe (SHRIMP) to restrict the timing of the mylonitization in the Funatsu Shear Zone, which is situated on the eastern and southeastern margins of the Hida Belt. Here, undeformed granite intrudes into the granitic mylonite deformed by mylonitization in the Funatsu Shear Zone. The granitic mylonite and the undeformed granite yielded U–Pb zircon ages of 242.6 ±1.9 Ma and 199.1 ±1.9 Ma, respectively. The granitic mylonite and the undeformed granite also yielded zircon oxygen isotope ratios (δ18OVSMOW) of 7.74 ±0.37 ‰ and 5.74 ±0.17 ‰, which suggests that these rocks are derived from different magmas. Therefore, the timing of the mylonitization in the Funatsu Shear Zone is constrained to be at least 242.6–199.1 Ma, which is consistent with other data from the Tateyama area. The U–Pb zircon ages of the banded gneiss in the Kamioka area also reveals that the protolith is a sedimentary rock deposited at approximately 256 Ma, and regional metamorphism occurred at 245.0 ±6.6 Ma, which indicates that the mylonitization in the Funatsu Shear Zone occurred after the metamorphism in the Hida Belt. These geochronological and geochemical data give new insight into the relationship between the Hida Belt and the eastern margin of the Asian continent: the geochronological and geochemical data in this study support the possibility that the Funatsu Shear Zone is comparable with the Cheongsan Shear Zone located at the center of the Ogcheon Belt on the Korean Peninsula.  相似文献   
247.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   
248.
In this introduction we briefly summarize the 14 contributions to Part I of this special issue on Tsunami Science Four Years after the 2004 Indian Ocean Tsunami. These papers are representative of the new tsunami science being conducted since the occurrence of that tragic event. Most of these were presented at the session: Tsunami Generation and Hazard, of the International Union of Geodesy and Geophysics XXIV General Assembly held at Perugia, Italy, in July of 2007. That session included over one hundred presentations on a wide range of topics in tsunami research. The papers grouped into Part I, and introduced here, cover topics directly related to tsunami mitigation such as numerical modelling, hazard assessment and databases. Part II of this special issue, Observations and Data Analysis, will be published in a subsequent volume of Pure and Applied Geophysics.  相似文献   
249.
We measured the electrical resistivity of face-centered-cubic (fcc) structured iron hydrides at high pressures up to 65 GPa and high temperatures in a laser-heated diamond anvil cell. The results indicate that the resistivity of stoichiometric fcc FeHx (x ~ 1.0) is smaller than that of fcc Fe at the same pressure and temperature conditions. The same behavior was also observed in fcc FeNiHx (x ~ 1.0). On the other hand, hydrogen-poor fcc FeHx (x < 0.77) showed a resistivity comparable to that of the fcc phase of pure iron. Therefore, we conclude that the stoichiometric fcc Fe (–Ni) hydride is more conductive than Fe (–Ni) with the same crystal symmetry, and the impurity resistivity of hydrogen in Fe is vanishingly small. Even if hydrogen is the major light element in the Earth's core, it would have little influence on the electrical and thermal conductivity of Fe–Ni alloys, and hence the thermal evolution of the core.  相似文献   
250.
We measured the lattice thermal conductivities of Fe0.98O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61 GPa at 300 K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号