首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   16篇
  国内免费   13篇
测绘学   12篇
大气科学   44篇
地球物理   131篇
地质学   136篇
海洋学   119篇
天文学   86篇
综合类   5篇
自然地理   30篇
  2021年   7篇
  2020年   9篇
  2019年   13篇
  2018年   11篇
  2017年   19篇
  2016年   20篇
  2015年   14篇
  2014年   18篇
  2013年   15篇
  2012年   15篇
  2011年   30篇
  2010年   29篇
  2009年   23篇
  2008年   21篇
  2007年   24篇
  2006年   27篇
  2005年   25篇
  2004年   12篇
  2003年   21篇
  2002年   10篇
  2001年   21篇
  2000年   14篇
  1999年   10篇
  1998年   16篇
  1997年   10篇
  1996年   13篇
  1995年   9篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   8篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   10篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
21.
Peptidoglycan (PG) is a biopolymer found exclusively in the cell wall of bacteria. Recent chemical analysis of particulate organic matter suggests that a major amount of the muramic acid, an amino sugar present only in PG, could not be accounted for in terms of bacterial cells (Benner and Kaiser, 2003); however, data on particulate PG is quite sparse. In the present study, conducted in 1996, the PG was examined at 5 sampling sites in the northwestern Pacific Ocean, and in natural seawater cultures. Particulate PG, which was concentrated using a 96-well filtration plate equipped with Durapore filters (pore size, 0.22 μm), was measured by the silkworm larvae plasma (SLP) assay. The PG concentration generally decreased with depth and correlated significantly with bacterial abundance throughout the entire water column. However, the ratio of particulate PG to bacterial abundance varied with depth. The average ratio was 0.61 ± 0.53 (average ± SD, n = 40) between 50 and 2000 m, which agreed with the bacterial cellular PG content from 0.63 to 1.1 fg cell−1 obtained in seawater cultures. On the other hand, the ratios of PG to bacteria from the surface to 50 m (3.7 ± 2.6, n = 29) and below 2,000 m (2.1 ± 1.7, n = 7) were significantly higher than that between 50 and 2,000 m. These results may suggest that, in the surface and deep layers, a significant fraction of particulate PG was present in bacterial detritus, whereas this fraction was reduced in the middle layer.  相似文献   
22.
23.
24.
The poleward flowing East Australian Current (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing eddy field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This current parallels the portion of the coast where Australia’s population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; eddy formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin Current on Australia’s west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin Current relationship. The EAC’s eddy structure and formation by the EAC are examined. A particular cold-core eddy is shown to have a “tilt” towards the coast, and that during a rotation the flow of particles may rise up to the euphotic zone and then down beneath. In a warm-core eddy, surface flooding is shown to produce a new shallower surface mixed layer and promote algal growth. An assessment of plankton data from 1938-1942 showed that the local, synoptic conditions had to be incorporated before any comparison with the present. There are useful relationships of water mass characteristics in the Tasman Sea and separation zone with larval fish diversity and abundance, as well as with long-line fisheries. These fisheries-pelagic habitat relationships are invaluable for fisheries management, as well as for climate change assessments.There is further need to examine the EAC influence on rainfall, storm activity, dust deposition, and on the movements by fish, sharks and whales. The Australian Integrated Marine Observing System (IMOS) has provided new infrastructure to determine the changing behaviour of the EAC and its bio-physical interaction with the coasts and estuaries. The forecasting and hindcasting capability developed under the Bluelink project has provided a new tool for data synthesis and dynamical analysis. The impact of a strengthening EAC and how it influences the livelihoods of over half the Australian population, from Brisbane to Sydney, Hobart and Melbourne, is just being realised.  相似文献   
25.
A comparison of monthly biogeochemical measurements made from 1993 to 1995, combined with hydrography and satellite altimetry, was used to assess the impacts of nine eddy events on primary productivity and particle flux in the Sargasso Sea. Measurements of primary production, thorium-234 flux, nitrate+nitrite, and photosynthetic pigments made at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site were used. During the 3 years of this study, four out of six high thorium-234 flux events occurred during the passage of an eddy. Primary production nearly as high as the spring bloom maximum was observed in two mode-water eddies (May 1993 and July 1995). The 1994 spring bloom at BATS was suppressed by the passage of an anticyclone. Distinct phytoplankton community shifts were observed in mode-water eddies, which had an increased percentage of diatoms and dinoflagellates, and in cyclones, which had an increased percentage of Synechococcus. These variations in species composition within mode-water eddies and cyclones may be associated with the ages of the sampled eddies, and/or differences in physical, chemical, and biological factors in these two distinct eddy types. In general, eddies that were 1–2 months old elicited a large biological response; eddies that were 3 months old may show a biological response and were accompanied by high thorium flux; eddies that were 4 months old or older did not show a biological response or high thorium flux. A conceptual model depicting temporal changes during eddy upwelling, maturation, and decay can explain the observations in all seven upwelling eddies present in the time-series investigated herein.  相似文献   
26.
The Late Quaternary sea-ice history of the northeastern Japan Sea is discussed on the basis of the occurrence of dropstones and ice-rafted debris (IRD) in fine sediment cores. IRD was found in all strata except those from the Holocene and oxygen isotope stage 5.5. The largest expansion of sea ice was recognized at the last glacial maximum (LGM; oxygen isotope stage 2), when the southern margin of seasonal sea ice was probably located in the vicinity of the Matsumae Plateau. The margin might occasionally have expanded further southward to off the Oga Peninsula. Sea ice expanded southward from mid-stage 5 to the LGM in response to global cooling, but with much fluctuation. Sea ice remained during deglaciation until around 10 ka, but after 10 ka it retreated northward rapidly in response to global warming and changes in surface water conditions. Greater fluctuations in IRD were found in core GH95-1208 collected from off Rumoi, Hokkaido, Japan. More IRD was found in sediments from late stage 3, late stage 5, and early stage 6. The fluctuations were not concordant with global climate changes (based on the standard oxygen isotope curve), and may have been controlled by regional climate factors such as the strength of the winter monsoon, which is related in turn to high-latitude atmospheric circulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
27.
28.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   
29.
针对移动式海洋地震仪对控制系统电路设计的可靠性和低功耗的需求,提出了一种基于Cor-tex-M4内核芯片的硬件电路设计方案.首先选用超低功耗的STM32L4芯片作为微控制单元,在保证高运行能力的同时降低自身功耗;其次针对MCU(Microprogrammed Control Unit)、传感器等超低功耗模块提出针对性的...  相似文献   
30.
Chemical analyses of 48 fresh abyssal tholeiite specimens sampled from two dredge localities clearly define systematic chemical differences which indicate a moderate iron-enrichment trend of fractionation oblique to the FeO*2O, P2O5 and TiO2. These results suggest that fractionation may be important in controlling the chemistry of abyssal tholeiites along sections of the mid-oceanic ridge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号