首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24544篇
  免费   175篇
  国内免费   926篇
测绘学   1410篇
大气科学   1981篇
地球物理   4534篇
地质学   11630篇
海洋学   1050篇
天文学   1658篇
综合类   2162篇
自然地理   1220篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   10篇
  2018年   4762篇
  2017年   4040篇
  2016年   2580篇
  2015年   235篇
  2014年   88篇
  2013年   32篇
  2012年   996篇
  2011年   2737篇
  2010年   2022篇
  2009年   2315篇
  2008年   1892篇
  2007年   2362篇
  2006年   57篇
  2005年   201篇
  2004年   407篇
  2003年   415篇
  2002年   253篇
  2001年   49篇
  2000年   54篇
  1999年   15篇
  1998年   25篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   22篇
  1980年   21篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   8篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.  相似文献   
62.
There is a need to bridge theory and practice for incorporating parameter uncertainty in geostatistical simulation modeling workflows. Simulation workflows are a standard practice in natural resource and recovery modeling, but the incorporation of multivariate parameter uncertainty into those workflows is challenging. However, the objectives can be met without considerable extra effort and programming. The sampling distributions of statistics comprise the core theoretical notion with the addition of the spatial degrees of freedom to account for the redundancy in the spatially correlated data. Prior parameter uncertainty is estimated from multivariate spatial resampling. Simulation-based transfer of prior parameter uncertainty results in posterior distributions which are updated by data conditioning and the model domain extents and configuration. The results are theoretically tractable and practical to achieve, providing realistic assessments of uncertainty by accounting for large-scale parameter uncertainty, which is often the most important component impacting a project. A simulation-based multivariate workflow demonstrates joint modeling of intrinsic shale properties and uncertainty in estimated ultimate recovery in a shale gas project. The multivariate workflow accounts for joint prior parameter uncertainty given the current well locations and results in posterior estimates on global distributions of all modeled properties. This is achieved by transferring the joint prior parameter uncertainty through conditional simulations.  相似文献   
63.
Based on the research on the rural living standard in China in terms of annual net income per capita, we define six types of village-level economy, i.e. "to be extremely poor", "to make a basic living", "to dress warmly and eat one's fill", "to try to enrich (to disengage poverty)", "to be well-off" and "to be affluent". The data of average annual net income of all the 292 villages between 1990 and 2004 in rural Gongyi City, Henan Province were collected, verified and classified. By using standard deviation, coefficient of variation and regression analysis, it is found that the Gongyi's rural economy has boosted up remarkably from the relative-poverty and absolute-poverty stages in 1990 to the well-off in 2004. However, the absolute differences between villages present a trend of enlargement, while the relative differences fluctuating. On the other hand, spatial analysis of village-level economy shows that most villages with relatively high economic development level were located along national expressway and most villages with absolute-poverty lay in remote mountainous areas in 1990. Since the 1990s, the rapid urbanization and industrialization have had strongly positive effects on rural economic growth. Initial economic foundation, natural resources and traditional techniques also contribute to village economy. From the perspective of geography, villages with location advantages, such as near urban center or industrial parks, have more chances for their economic development and the "core-periphery" economic structure has been presented in the process of rural development.  相似文献   
64.
The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was 0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.  相似文献   
65.
A simple analytical model is developed for the meanupcrossing rate of plume concentration fluctuations assuming that thisprocess can be well approximated by a lognormal process. The resultingexpression requires only the specification of the in-plume fluctuationintensity and in-plume Taylor micro-time scale and, hence, does notexplicitly involve the joint probability density function of theconcentration and its derivative. The analytical model provides agood fit to some field measurements of the mean upcrossing rate ina dispersing plume.  相似文献   
66.
The two-band soft X-ray observations of solar flares made by the Naval Research Laboratory’s (NRL) SOLar RADiation (SOLRAD) satellites and by the Geostationary Orbiting Environmental Satellites (GOES) operated by the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Prediction Center have produced a nearly continuous record of solar flare observations over a period of more than forty years (1969 – 2011). However, early GOES observations (i.e., GOES-2) and later (GOES-8 and subsequent missions) are not directly comparable due to changes in the conversion of measured currents to integrated fluxes in the two spectral bands that were adopted: 0.05 – 0.3 (or 0.4) nm, which we refer to as XS and 0.1 – 0.8 nm (XL). Furthermore, additional flux adjustments, using overlapping data sets, were imposed to provide consistency of flare-flux levels from mission to mission. This article evaluates the results of these changes and compares experimental GOES-8/GOES-2 results with changes predicted from modeled flare spectra. The factors by which recent GOES observations can be matched to GOES-2 are then optimized by adapting a technique first used to extrapolate GOES X-ray fluxes above saturation using ionospheric VLF radio phase enhancements. A nearly 20% increase in published GOES-8 XL data would be required to match to GOES-2 XL fluxes, which were based on observed flare spectra. On the other hand, a factor of 1.07 would match GOES-8 and later flat-spectrum 0.1 – 0.8 nm fluxes to GOES-2 XL if the latter data were converted to a flat-spectrum basis. Finally, GOES-8 observations are compared to solar soft X-ray estimates made concurrently with other techniques. Published GOES-8 0.1 – 0.8 nm fluxes are found to be 0.59 of the mean of these other determinations. Rescaling GOES to a realistic flare spectrum and removing a 30% downward adjustment applied to the GOES-8 measurements during initial data processing would place GOES-8 and later GOES XL fluxes at 0.94 of this XL mean. GOES-2 on the same scale would lie at about 0.70 of this mean. Significant uncertainties in the absolute levels of broad band soft X-ray fluxes still remain, however.  相似文献   
67.
Herbaceous plants are widely distributed on islands and where they exhibit spatial heterogeneity. Accurately identifying the impact factors that drive spatial heterogeneity can reveal typical island biodiversity patterns. Five southern islands in the Miaodao Archipelago, North China were studied herein. The spatial distribution of herbaceous plant diversity on these islands was analyzed, and the impact factors and their degree of impact on spatial heterogeneity were identified using CCA ordination and ANOVA. The results reveal 114 herbaceous plant species, belonging to 94 genera from 34 families in the 50 plots sampled. The total species numbers on different islands were significantly positively correlated with island area, and the average α diversity was correlated with human activities, while the β diversity among islands was more affected by island area than mutual distances. Spatial heterogeneity within islands indicated that the diversities were generally high in areas with higher altitude, slope, total nitrogen, total carbon, and canopy density, and lower moisture content, pH, total phosphorus, total potassium, and aspect. Among the environmental factors, pH, canopy density, total K, total P, moisture content, altitude, and slope had significant gross effects, but only canopy density exhibited a significant net effect. Terrain affected diversity by restricting plantation, plantation in turn influenced soil properties and the two together affected diversity. Therefore, plantation was ultimately the fundamental driving factor for spatial heterogeneity in herbaceous plant diversity on the five islands.  相似文献   
68.
This study analyzed the uncertainty of inversion and the resolution limit in the presence of noise by means of statistical experiments. The exhaustive method is adopted to obtain the global optimal solution in each experiment. We found that even with small level of noise, solutions fluctuate in a large range for the thin bed. The distribution of solutions in the presence of noise is closely related to the spread of the cost function in the absence of noise. As a result, the area of a certain neighborhood around the true solution on the spread of the cost function in the absence of noise is used to evaluate the uncertainty of inversion and the resolution limit in the presence of noise. In the case that the SNR (signal-to-noise ratio) is 5 in this study, solutions focus around the true solution with a very small uncertainty only when the bed thickness is greater than the reciprocal of the double predominant frequency of the convoluting wavelet.  相似文献   
69.
Three finite element codes, namely TELEMAC, ADCIRC and QUODDY, are used to compute the spatial distributions of the M2, M4 and M6 components of the tide in the sea region off the west coast of Britain. This region is chosen because there is an accurate topographic dataset in the area and detailed open boundary M2 tidal forcing for driving the model. In addition, accurate solutions (based upon comparisons with extensive observations) using uniform grid finite difference models forced with these open boundary data exist for comparison purposes. By using boundary forcing, bottom topography and bottom drag coefficients identical to those used in an earlier finite difference model, there is no danger of comparing finite element solutions for “untuned unoptimised solutions” with those from a “tuned optimised solution”. In addition, by placing the open boundary in all finite element calculations at the same location as that used in a previous finite difference model and using the same M2 tidal boundary forcing and water depths, a like with like comparison of solutions derived with the various finite element models was possible. In addition, this open boundary was well removed from the shallow water region, namely the eastern Irish Sea where the higher harmonics were generated. Since these are not included in the open boundary, forcing their generation was determined by physical processes within the models. Consequently, an inter-comparison of these higher harmonics generated by the various finite element codes gives some indication of the degree of variability in the solution particularly in coastal regions from one finite element model to another. Initial calculations using high-resolution near-shore topography in the eastern Irish Sea and including “wetting and drying” showed that M2 tidal amplitudes and phases in the region computed with TELEMAC were in good agreement with observations. The ADCIRC code gave amplitudes about 30 cm lower and phases about 8° higher. For the M4 tide, in the eastern Irish Sea amplitudes computed with TELEMAC were about 4 cm higher than ADCIRC on average, with phase differences of order 5°. For the M6 component, amplitudes and phases showed significant small-scale variability in the eastern Irish Sea, and no clear bias between the models could be found. Although setting a minimum water depth of 5 m in the near-shore region, hence removing wetting and drying, reduced the small-scale variability in the models, the differences in M2 and M4 tide between models remained. For M6, a significant reduction in variability occurred in the eastern Irish Sea when a minimum 5-m water depth was specified. In this case, TELEMAC gave amplitudes that were 1 cm higher and phases 30° lower than ADCIRC on average. For QUODDY in the eastern Irish Sea, average M2 tidal amplitudes were about 10 cm higher and phase 8° higher than those computed with TELEMAC. For M4, amplitudes were approximately 2 cm higher with phases of order 15° higher in the northern part of the region and 15° lower in the southern part. For M6 in the north of the region, amplitudes were 2 cm higher and about 2 cm lower in the south. Very rapid M6 tidal-phase changes occurred in the near-shore regions. The lessons learned from this model inter-comparison study are summarised in the final section of the paper. In addition, the problems of performing a detailed model–model inter-comparison are discussed, as are the enormous difficulties of conducting a true model skill assessment that would require detailed measurements of tidal boundary forcing, near-shore topography and precise knowledge of bed types and bed forms. Such data are at present not available.  相似文献   
70.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain (SNP) in the 1910s and 1930s. We then allocated this cropland area to grid cells with a size of 1 km × 1 km, using a range of cultivation possibilities from high to low; this was based on topography and minimum distances to rivers, settlements, and traffic lines. Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China, and map vectorization was performed with ArcGIS technology. Cropland areas for the 1970s, 1980s, 1990s, 2000s, and 2010s were retrieved from Landsat images. We found that the cropland areas were 4.92 × 104 km2 and 7.60 × 104 km2, accounting for 22.8% and 35.2% of the total area of the SNP in the 1910s and 1930s, respectively, which increased to 13.14 × 104 km2, accounting for 60.9% in the 2010s. The cropland increased at a rate of 1.18 × 104 km2 per decade from the 1910s to 1970s while it was merely 0.285 × 104 km2 per decade from the 1970s to 2010s. From the 1910s to 1930s, new cultivation mainly occurred in the central SNP while, from the 1930s to 1970s, it was mainly over the western and northern parts. This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号