首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   8篇
  国内免费   6篇
大气科学   7篇
地球物理   42篇
地质学   55篇
海洋学   9篇
天文学   15篇
自然地理   11篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   12篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1980年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
21.
Synthetic (Mg0.51, Mn0.49)2SiO4 olivine samples are heat-treated at three different pressures; 0, 8 and 12 GPa, all at the same temperature (~500° C). X-ray structure analyses on these single crystals are made in order to see the pressure effect on cation distribution. The intersite distribution coefficient of Mg and Mn in M1 and M2 sites, K D = (Mn/Mg) M1/(Mn/Mg) M2, of these samples are 0.192 (0 GPa), 0.246 (8 GPa) and 0.281 (12 GPa), indicating cationic disordering with pressure. The small differences of cell dimensions between these samples are determined by powder X-ray diffraction. Cell dimensions b and c decrease, whereas a increases with pressure of equilibration. Cell volume decreases with pressure as a result of a large contraction of the b cell dimension. The effect of pressure on the free energy of the cation exchange reaction is evaluated by the observed relation between the cell volume and the site occupancy numbers. The magnitude of the pressure effect on cation distribution is only a fifth of that predicted from the observed change in volume combined with thermodynamic theory. This phenomenon is attributed to nonideality in this solid solution, and nonideal parameters are required to describe cation distribution determined in the present and previous experiments. We use a five-parameter equation to specify the cationic equilibrium on the basic of thermodynamic theory. It includes one energy parameter of ideal mixing, two parameters for nonideal effects, one volume parameter, and one thermal parameter originated from the lattice vibrational energy. The present data combined with some of the existing data are used to determine the five parameters, and the cation distribution in Mg-Mn olivine is described as a function of temperature, pressure, and composition. The basic framework of describing the cationic behavior in olivine-type mineral is worked out, although the result is preliminary: each of the determined parameters is not accurate enough to enable us to make a reliable prediction.  相似文献   
22.
A previously unknown amber‐bearing bed in the Lower Cretaceous Miyako Group, northeastern Japan, was deposited within a sequence that contains abundant marine macrofossils and wave‐generated sedimentary structures that suggest deposition in an open shallow marine environment. How the amber was transported from its terrestrial origin to the marine environment is unclear, but sedimentary gravity flow is a strong candidate. Our observations suggest that the occurrence of amber clasts in sediments deposited in open and closed shallow marine environments is not uncommon. Thus, in addition to terrestrial sediments, sediments of marine origin have potential as targets for amber exploration.  相似文献   
23.
Although seismic isolation rubber bearings in bridges and buildings have proven to be a very effective passive method for reducing earthquake‐induced forces, a detailed mechanical modeling of the rubber that is used in bearings under large strains has not been established. Therefore, a 3D model of failure behavior and the design criteria for the safety evaluation of seismic isolation bearings have not yet been developed. This paper presents: (1) correlation‐based template‐matching algorithms to measure large strain fields of continua; (2) a failure criterion for rubber; and (3) the design criteria for the safety evaluation of laminated algorithms, data‐validation algorithms were developed and implemented to eliminate possible unrealistic displacement vectors present in the measured displacement field. The algorithms were successfully employed in the strain field measurement of LRB and rubber materials that are subjected to failure. The measured local strains for rubber material at failure were used to develop a failure criterion for rubber. The validity of the proposed criterion was evaluated by applying it to the LRB; the criterion was introduced into a 3D finite element model of LRB, compared with the experimental results of bearings failure, and verified. Finally, design criteria are proposed for LRB for the safety evaluation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
24.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   
25.
Titanium- and water-rich metamorphic olivine (Fo 86–88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x ~ 0.1 in the formula 4Mg2SiO4·(1?x)Mg(OH,F)2·xTiO2) than Ti-clinohumite in the sample matrix (x = 0.34–0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2–60 ppm), B (10–20 ppm), F (10–130 ppm) and Zr (0.9–2.1 ppm). It is enriched in 11B (δ11B = +17 to +23 ‰). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.  相似文献   
26.
Structural health monitoring of large multispan flexible bridges is particularly important because of their important role in civil infrastructure and transportation systems. In this study, the response of the Yokohama Bay Bridge (YBB), a three‐span cable‐stayed bridge, to the 2011 Great East Japan Earthquake is used to perform multi‐input multi‐output system identification studies. The extensive multicomponent measurements are also used to develop and validate data‐driven nonlinear mathematical models that can predict the response of YBB to various earthquake records and can accurately estimate its damping characteristics when the system is driven into the nonlinear response range. A combination of least‐square (parametric) and neural network (nonparametric) approaches is used to develop the mathematical models, along with time‐marching techniques for dynamic response calculations. It is shown that the nonlinear mathematical models perform better than the equivalent linear models, both for response prediction and damping estimation. The importance of having an accurate approach for quantifying the damping due to the variety of nonlinear features in the YBB response is shown. This study demonstrates the significance of constructing robust mathematical models that can capture the correct physics of the underlying system and that can be used for computational purposes to augment experimental studies. Given the lack of suitable data sets for full‐scale structures under extreme loads, the availability of the long‐duration measurements from the 2011 Great East Japan Earthquake and its many strong aftershocks provides an excellent opportunity to perform the analyses presented in this study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
27.
28.
On March 11th 2011 a M w 9.0 mega-thrust interface subduction earthquake, the Great East Japan Earthquake, occurred 130 km off the northeast coast of Japan in the Pacific Ocean at the Japan Trench, triggering tsunami which caused damage along 600 km of coastline. Observations of damage to buildings (including vertical evacuation facilities) and coastal defences in Tōhoku are presented following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures. Observations are presented in the context of the coastal setting and tsunami characteristics experienced at each location. Damage surveys were carried out in Kamaishi City and Kesennuma City using a damage scale for reinforced concrete (RC), timber and steel frame buildings adapted from an earlier EEFIT tsunami damage scale. Observations show that many sea walls and breakwaters were overtopped, overturned, or broken up, but provided some degree of protection. We show the extreme variability of damage in a local area due to inundation depth, flow direction, velocity variations and sheltering. Survival of many RC shear wall structures shows their high potential to withstand local earthquake and significant tsunami inundation but further research is required into mitigation of scour, liquefaction, debris impact, and the prevention of overturning failure. Damage to steel and timber buildings are also discussed. These observations are intended to contribute to mitigation of future earthquake and tsunami damage by highlighting the key features which influence damage level and local variability of damage sustained by urban coastal infrastructure when subjected to extreme tsunami inundation depths.  相似文献   
29.
Measurements of thickness and grain size along flow‐parallel transects across onshore deposits of the 2004 Indian Ocean tsunami revealed macroscopic horizontal variations and provided new insights into tsunami sedimentation. The tsunami caused severe erosion of beaches, river mouths, and the shallow seafloor along the coast of southwestern Thailand and supplied sufficient sediment to deposit a kilometer‐wide blanket of sand on the land surface. The tsunami deposits generally fine landward with some fluctuations caused by local entrainment and settlement of sediments. Sediments of medium and fine sand are restricted to a few hundreds of meters inland from their source, whereas finer grained sediments were suspended longer and deposited 1 km or more inland. Although the thickness of the tsunami deposits is strongly influenced by local topography, they generally thin landward. In areas of low‐relief topography, the rate of landward thinning is exponential and reflects the dominance of sediment supply to nearshore areas over that to areas farther inland.  相似文献   
30.
Time delay problem and its compensation in active control of civil engineering structures were studied. It has been shown by stability analysis of a SDOF system with time delayed feedback that the maximum allowable time delay depends not only on the natural period of the structure but also on feedback gains. We have demonstrated by numerical simulation that the performance of the control system degrades significantly when the time delay is close to this value and it even becomes unstable when time delay is greater than or equal to this value. The maximum allowable time delay decreases with decrease in natural period of the structure as well as with increase in active damping. The paper presents a technique for compensation by modelling time delay as transportation lag. This method ensures the stability of the controlled system as well as the desired response reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号