首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   0篇
测绘学   2篇
大气科学   7篇
地球物理   24篇
地质学   41篇
海洋学   11篇
天文学   42篇
自然地理   7篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   10篇
  2009年   10篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1971年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
11.
Abstract Crack-filling clays and weathered cracks were observed in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m cores drilled from the Nojima Fault Zone, which was activated during the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). The crack-filling clays consist mainly of unconsolidated fine-grained materials that fill opening cracks with no shear textures. Most of the cracks observed in the DPRI 1800 m cores are yellow-brown to brown in color due to weathering. Powder X-ray diffraction analyses show that the crack-filling clays are composed mainly of clay minerals and carbonates such as siderite and calcite. Given that the top of the borehole is approximately 45 m above sea level, most of the core is far below the stable groundwater table. Hence, it is suggested that the crack-filling clays and weathered cracks in the cores taken at depths of 1800 m were formed by the flow of surface water down to the deep fractured zone of the Nojima Fault Zone during seismic faulting.  相似文献   
12.
Abstract Apatite and zircon fission track ages from Ryoke Belt basement in northeast Kyushu show late Cretaceous, middle to late Eocene, middle Miocene and Quaternary groupings. The basement cooled through 240 ± 25°C, the closure temperature for fission tracks in zircon, mainly during the interval 74-90 Ma as a result of uplift and denudation, the pattern being uniform across northeast Kyushu. In combination with published K-Ar ages and the Turonian-Santonian age of sedimentation in the Onogawa Basin, active suturing along the Median Tectonic Line from 100-80 Ma, at least, is inferred. Ryoke Belt rocks along the northern margin of Hohi volcanic zone (HVZ) cooled rapidly through ∼100°C to less than 50°C during the middle Eocene to Oligocene, associated with 2.5-3.5 km of denudation. The timing of this cooling follows peak heating in the Eocene-Oligocene part (Murotohanto subbelt) of the Shimanto Belt in Muroto Peninsula (Shikoku) inferred previously, and coincides with the 43 Ma change in convergence direction of the Pacific-Eurasian plate and the demise of the Kula-Pacific spreading centre. Ryoke Belt rocks along the southern margin of HVZ have weighted mean apatite fission track ages of 15.3 ± 3.1 Ma. These reset ages are attributed to an increase in geothermal gradient in the middle Miocene combined with rapid denudation and uplift of at least 1.4 km. These ages indicate that heating of the overriding plate associated with the middle Miocene start of subduction of hot Shikoku Basin lithosphere extended into the Ryoke Belt in northeast Kyushu. Pleistocene apatite fission track ages from Ryoke Belt granites at depth in the centre of HVZ are due to modern annealing in a geothermal environment.  相似文献   
13.
We obtain the viscous stirring and dynamical friction rates of planetesimals with a Rayleigh distribution of eccentricities and inclinations, using three-body orbital integration and the procedure described by Ohtsuki (1999, Icarus137, 152), who evaluated these rates for ring particles. We find that these rates based on orbital integrations agree quite well with the analytic results of Stewart and Ida (2000, Icarus 143, 28) in high-velocity cases. In low-velocity cases where Kepler shear dominates the relative velocity, however, the three-body calculations show significant deviation from the formulas of Stewart and Ida, who did not investigate the rates for low velocities in detail but just presented a simple interpolation formula between their high-velocity formula and the numerical results for circular orbits. We calculate evolution of root mean square eccentricities and inclinations using the above stirring rates based on orbital integrations, and find excellent agreement with N-body simulations for both one- and two-component systems, even in the low-velocity cases. We derive semi-analytic formulas for the stirring and dynamical friction rates based on our numerical results, and confirm that they reproduce the results of N-body simulations with sufficient accuracy. Using these formulas, we calculate equilibrium velocities of planetesimals with given size distributions. At a stage before the onset of runaway growth of large bodies, the velocity distribution calculated by our new formulas are found to agree quite well with those obtained by using the formulas of Stewart and Ida or Wetherill and Stewart (1993, Icarus106, 190). However, at later stages, we find that the inclinations of small collisional fragments calculated by our new formulas can be much smaller than those calculated by the previously obtained formulas, so that they are more easily accreted by larger bodies in our case. The results essentially support the previous results such as runaway growth of protoplanets, but they could enhance their growth rate by 10-30% after early runaway growth, where those fragments with low random velocities can significantly contribute to rapid growth of runaway bodies.  相似文献   
14.
In order to investigate the behaviour of proton in brucite under pressure, polarized IR absorption spectra and polarized absorbance distributions of (001) and (110) oriented single crystal of brucite under high pressure were measured by Fourier transform polarized infrared microspectroscopy with diamond anvil cell. A pressure-induced absorption peak at 3645 cm−1 observed under pressures over 2.9 GPa was confirmed to be due to a secondarily formed OH dipole. Polarized absorbance distribution measured under pressure of (110) suggests that the secondary OH dipole is oriented 136.0° to c-axis under 5.3 GPa. Isotropic absorbance distribution of (001) suggests that the secondary OH dipole is disorderly trifurcated. Abrupt onset of the secondary peak and its reverse pleochroism suggest that the process of secondary OH dipole formation is due to proton transfer between layers in brucite. The calculated orientation of the secondary OH dipole consistent with the O-H···O′ angle revealed by neutron diffraction supports the existence of proton transfer along H···O′. The secondary OH dipole implies a new site of proton in brucite under pressure. Received: 6 March 1997 / Revised, accepted: 9 June 1997  相似文献   
15.
High-, intermediate-, and low-type zircon crystals of natural origin were investigated using a 1,000 kV high-resolution electron microscope. The lattice images obtained successfully for high zircon were in good accordance with computer simulated ones, and 1.5 Å separations, the nearest distance between zirconium atoms projected along the a axis, were clearly resolved under a certain instrumental condition. The images of fission tracks and surrounding areas show nearly perfect lattice images and that within the fission tracks, with a width of 20 ~ 30 Å and length of ca. 1,000 Å, the structure is heavily disordered, almost amorphous; that both sides of the tracks the lattices are displaced or dislocated, and that in the area adjacent to the tracks, bright and dark spot images occur, corresponding to vacancies and their interstitial atoms. In low zircon, the structure is completely destroyed to show an entirely amorphous state, whereas an intermediate type consists of domains of the order of 50 ~ 100 Å across with nearly regular lattices, along whose boundaries strongly disordered areas with widths of few tens of angstroms appear, but the relative orientations of the neighbouring domains are almost continuous. Thus a whole process of metamictization is visualized on a lattice scale. Metamictization proceeds principally by the formation of fission tracks, the direct result of fast movement of nuclear particles; recoil nuclei therefrom seem to play a less important role in the destruction of the structure.  相似文献   
16.
17.
Sunspot drawings obtained at the National Astronomical Observatory of Japan during the years 1954–1986 were used to determine meridional motions of the Sun. A meridional flow of a few ms–1 was found, which is equatorward in the latitude range from -20° to +15° and is poleward at higher latitudes in both hemispheres. A northward flow of 0.01° day–1 or 1.4 ms–1 at mid-latitudes (between 10° and 20°) was also detected. From our limited data-set of three solar cycles, an indication of solar-cycle dependence of meridional motions was found.  相似文献   
18.
The Cr isotope ratios of terrestrial and extra-terrestrial materials are emerging as one of the most important tracers in geosciences. Previous studies on Cr isotopic measurements using TIMS have found that there is residual Cr isotopic fractionation between the mass-fractionation-corrected 53Cr/52Cr and 54Cr/52Cr ratios, which may cause an offset of obtained ratios from the reference values. The residual fractionation was thought to be caused by the evaporation of Cr-oxide species during thermal ionisation, but the mechanism by which this residual fractionation could be reduced remained unclear. Here we revisit the issue of residual fractionation and propose that this problem can be alleviated by utilising W filaments instead of conventionally used Re filaments for Cr ionisation. Using W filaments, the formation of CrO+ was suppressed during heating as the filament temperature was ~ 100 °C lower than when Re filaments were used. In repeated measurement of a carbonaceous chondrite, the intermediate precisions of 53Cr/52Cr and 54Cr/52Cr ratios in the W filament runs were two to three times better than those of the Re filament runs. Therefore, the new finding of this study will be of key importance for future studies of Cr isotopes for terrestrial and extra-terrestrial materials.  相似文献   
19.
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180° azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne–Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.  相似文献   
20.
We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.Deceased January 24, 1993; R. Bunemanet al. 1993.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号