首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   18篇
  国内免费   5篇
测绘学   7篇
大气科学   42篇
地球物理   138篇
地质学   80篇
海洋学   17篇
天文学   26篇
自然地理   17篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   12篇
  2015年   9篇
  2014年   13篇
  2013年   23篇
  2012年   11篇
  2011年   11篇
  2010年   19篇
  2009年   18篇
  2008年   20篇
  2007年   16篇
  2006年   18篇
  2005年   3篇
  2004年   12篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   14篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1970年   1篇
  1954年   1篇
  1953年   1篇
排序方式: 共有327条查询结果,搜索用时 0 毫秒
31.
Because it can be carried by flowing water, a sand/gravel pit on the river bed could migrate downstream. Consequently, the presence of pits on river beds could pose a safety threat to in-stream hydraulic structures such as bridge piers. A pit migration model can be used to predict progressive changes of pit geometry as it migrates downstream. However, due to the existence of many uncertainties, the maximum pit depth cannot be predicted with certainty. This paper adopted a simple pit migration model and evaluated the uncertainty associated with the calculated maximum pit depth. Such information is essential for evaluating the probability that a migrating pit could pose a safety threat to a downstream hydraulic structure. Three reliability analysis techniques were applied and their performances were compared.  相似文献   
32.
—Whereas the coast of Peru south of 10°S is historically accustomed to tsunamigenic earthquakes, the subduction zone north of 10°S has been relatively quiet. On 21 February 1996 at 21:51 GMT (07:51 local time) a large, tsunamigenic earthquake (Harvard estimate M w = 7.5) struck at 9.6°S, 79.6°W, approximately 130 km off the northern coast of Peru, north of the intersection of the Mendaña fracture zone with the Peru–Chile trench. The likely mechanism inferred from seismic data is a low-angle thrust consistent with subduction of the Nazca Plate beneath the South American plate, with relatively slow rupture characteristics. Approximately one hour after the main shock, a damaging tsunami reached the Peruvian coast, resulting in twelve deaths. We report survey measurements, from 7.7°S to 11°S, on maximum runup (2–5m, between 8 and 10°S), maximum inundation distances, which exceeded 500 m, and tsunami sediment deposition patterns. Observations and numerical simulations show that the hydrodynamic characteristics of this event resemble those of the 1992 Nicaragua tsunami. Differences in climate, vegetation and population make these two tsunamis seem more different than they were. This 1996 Chimbote event was the first large (M w >7) subduction-zone (interplate) earthquake between about 8 and 10°S, in Peru, since the 17th century, and bears resemblance to the 1960 (M w 7.6) event at 6.8°S. Together these two events are apparently the only large subduction-zone earthquakes in northern Peru since 1619 (est. latitude 8°S, est. M w 7.8); these two tsunamis also each produced more fatalities than any other tsunami in Peru since the 18th century. We concur with Pelayo and Wiens (1990, 1992) that this subduction zone, in northern Peru, resembles others where the subduction zone is only weakly coupled, and convergence is largely aseismic. Subduction-zone earthquakes, when they occur, are slow, commonly shallow, and originate far from shore (near the tip of the wedge). Thus they are weakly felt, and the ensuing tsunamis are unanticipated by local populations. Although perhaps a borderline case, the Chimbote tsunami clearly is another wake-up example of a "tsunami earthquake."  相似文献   
33.
Typhoons and storms have often brought heavy rainfalls and induced floods that have frequently caused severe damage and loss of life in Taiwan. Our ability to predict sewer discharge and forecast floods in advance during storm seasons plays an important role in flood warning and flood hazard mitigation. In this paper, we develop an integrated model (TFMBPN) for forecasting sewer discharge that combines two traditional models: a transfer function model and a back propagation neural network. We evaluated the integrated model and the two traditional models by applying them to a sewer system of Taipei metropolis during three past typhoon events (NARI, SINLAKU, and NAKR). The performances of the models were evaluated by using predictions of a total of 6 h of sewer flow stages, and six different evaluation indices of the predictions. Finally, an overall performance index was determined to assess the overall performance of each model. Based on these evaluation indices, our analysis shows that TFMBNP yields accurate results that surpass the two traditional models. Thus, TFMBNP appears to be a promising tool for flood forecasting for the Taipei metropolis sewer system. For publication in Stochastic Environmental Research and Risk Analysis.  相似文献   
34.
We present a geostatistically based inverse model for characterizing heterogeneity in parameters of unsaturated hydraulic conductivity for three-dimensional flow. Pressure and moisture content are related to perturbations in hydraulic parameters through cross-covariances, which are calculated to first-order. Sensitivities needed for covariance calculations are derived using the adjoint state sensitivity method. Approximations of the conditional mean parameter fields are then obtained from the cokriging estimator. Correlation between parameters and pressure – moisture content perturbations is seen to be strongly dependent on mean pressure or moisture content. High correlation between parameters and pressure data was obtained under saturated or near saturated flow conditions, providing accurate estimation of saturated hydraulic conductivity, while moisture content measurements provided accurate estimation of the pore size distribution parameter under unsaturated flow conditions.  相似文献   
35.
The traditional hydrological time series methods tend to focus on the mean of whichever variable is analysed but neglect its time‐varying variance (i.e. assuming the variance remains constant). The variances of hydrological time series vary with time under anthropogenic influence. There is evidence that extensive well drilling and groundwater pumping can intercept groundwater run‐off and consequently induce spring discharge volatility or variance varying with time (i.e. heteroskedasticity). To investigate the time‐varying variance or heteroskedasticity of spring discharge, this paper presents a seasonal autoregressive integrated moving average with general autoregressive conditional heteroskedasticity (SARIMA‐GARCH) model, whose the SARIMA model is used to estimate the mean of hydrological time series, and the GARCH model estimates its time‐varying variance. The SARIMA‐GARCH model was then applied to the Xin'an Springs Basin, China, where extensive groundwater development has occurred since 1978 (e.g. the average annual groundwater pumping rates were less than 0.20 m3/s in the 1970s, reached 1.20 m3/s at the end of the 1980s, surpassed 2.0 m3/s in the 1990s and exceeded 3.0 m3/s by 2007). To identify whether human activities or natural stressors caused the heteroskedasticity of Xin'an Springs discharge, we segmented the spring discharge sequence into two periods: a predevelopment stage (i.e. 1956–1977) and a developed stage (i.e. 1978–2012), and set up the SARIMA‐GARCH model for the two stages, respectively. By comparing the models, we detected the role of human activities in spring discharge volatility. The results showed that human activities caused the heteroskedasticity of the Xin'an Spring discharge. The predicted Xin'an Springs discharge by the SARIMA‐GARCH model showed that the mean monthly spring discharge is predicted to continue to decline to 0.93 m3/s in 2013, 0.67 m3/s in 2014 and 0.73 m3/s in 2015. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
36.
A mathematical model describing the constant pumping is developed for a partially penetrating well in a heterogeneous aquifer system. The Laplace‐domain solution for the model is derived by applying the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to vertical co‐ordinates. This solution is used to produce the curves of dimensionless drawdown versus dimensionless time to investigate the influences of the patch zone and well partial penetration on the drawdown distributions. The results show that the dimensionless drawdown depends on the hydraulic properties of the patch and formation zones. The effect of a partially penetrating well on the drawdown with a negative patch zone is larger than that with a positive patch zone. For a single‐zone aquifer case, neglecting the effect of a well radius will give significant error in estimating dimensionless drawdown, especially when dimensionless distance is small. The dimensionless drawdown curves for cases with and without considering the well radius approach the Hantush equation (Advances in Hydroscience. Academic Press: New York, 1964) at large time and/or large distance away from a test well. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
37.
38.
39.
The thermal state of the Bering Sea exhibits interdecadal variations, with distinct changes occurred in 1997–1998. After the unusual thermal condition of the Bering Sea in 1997–1998, we found that the recent climate variability (1999–2010) in the Bering Sea is closely related to Pacific basin-scale atmospheric and oceanic circulation patterns. Specifically, warming in the Bering and Chukchi Seas in this period involves sea ice reduction and stronger oceanic heat flux to the atmosphere in winter. The atmospheric response to the recent warming in the Bering and Chukchi Seas resembles the North Pacific Oscillation (NPO) pattern. Further analysis reveals that the recent climate variability in the Bering and Chukchi Seas has strong covariability with large-scale climate modes in the Pacific, that is, the North Pacific Gyre Oscillation and the central Pacific El Niño. In this study, physical connections among the recent climate variations in the Bering and Chukchi Seas, the NPO pattern and the Pacific large-scale climate patterns are investigated via cyclostationary empirical orthogonal function analysis. An additional model experiment using the National Center for Atmospheric Research Community Atmospheric Model, version 3, is conducted to support the robustness of the results.  相似文献   
40.
Arid regions in Asia are commonly characterized by rapidly growing populations with limited land resources and varying rainfall frequencies under climatic change. Despite being one of the most important environmental challenges in Asia, the changing aridity in this region, particularly due to large-scale land cover change, has not been well documented. In this study, we used rainfall data and a new land heterogeneity index to identify recent trend in land cover changes in the Asian arid regions. The result indicates a significant decreasing trend of barren lands and an increasing trend of vegetated lands. Although the potential land cover change is commonly believed to be strongly sensitive to rainfall change, such sensitivity has not been observed during the nine-year period (2001–2009) analyzed. Through the analyses of two separate periods (2001–2005 and 2005–2009), the sensitivity of rainfall to land cover change in arid regions is found to be dependent on the initial spatial heterogeneity of vegetated land cover. The approach used and the findings in this study represent an important step toward better understanding of large-scale land cover change in the Asian arid regions, and have the potential to predict future land cover change under various climate change scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号