首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   11篇
  国内免费   1篇
测绘学   8篇
大气科学   30篇
地球物理   47篇
地质学   117篇
海洋学   28篇
天文学   11篇
自然地理   55篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   8篇
  2017年   10篇
  2016年   21篇
  2015年   12篇
  2014年   12篇
  2013年   27篇
  2012年   13篇
  2011年   16篇
  2010年   10篇
  2009年   18篇
  2008年   11篇
  2007年   14篇
  2006年   7篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   13篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   9篇
  1996年   2篇
  1995年   2篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
91.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   
92.
Lane-level road network updating is crucial for urban traffic applications that use geographic information systems contributing to, for example, intelligent driving, route planning and traffic control. Researchers have developed various algorithms to update road networks using sensor data, such as high-definition images or GPS data; however, approaches that involve change detection for road networks at lane level using GPS data are less common. This paper presents a novel method for automatic change detection of lane-level road networks based on GPS trajectories of vehicles. The proposed method includes two steps: map matching at lane level and lane-level change recognition. To integrate the most up-to-date GPS data with a lane-level road network, this research uses a fuzzy logic road network matching method. The proposed map-matching method starts with a confirmation of candidate lane-level road segments that use error ellipses derived from the GPS data, and then computes the membership degree between GPS data and candidate lane-level segments. The GPS trajectory data is classified into successful or unsuccessful matches using a set of defuzzification rules. Any topological and geometrical changes to road networks are detected by analysing the two kinds of matching results and comparing their relationships with the original road network. Change detection results for road networks in Wuhan, China using collected GPS trajectories show that these methods can be successfully applied to detect lane-level road changes including added lanes, closed lanes and lane-changing and turning rules, while achieving a robust detection precision of above 80%.  相似文献   
93.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
94.
Stromatolites are abundant at many horizons in the Proterozoic of Western Australia. Recent advances in knowledge of Proterozoic stratigraphy of the state have provided a more detailed framework for interpreting the stromatolite data than has been available previously. In the 1.7 Ga Earaheedy Group of the Nabberu Basin a characteristic stromatolite assemblage occurs, and within the basin a biostratigraphic succession can be recognized. The assemblage contains several new forms which belong to new groups. The need to erect new groups for these early Proterozoic stromatolites is in agreement with recent studies in Canada, northern Europe and South Africa, and suggests that the problem of ‘younger’ or late Proterozoic stromatolite groups in early Proterozoic rocks mentioned by previous workers is a result of a lack of rigour in defining taxa. Examination of type material is necessary to determine how closely the Earaheedy forms resemble those described from these other regions.In Western Australia some stromatolite forms have a restricted vertical range and similar taxa occur in beds of approximately the same age in widely-separated areas: e.g. Kimberley Group and Earaheedy Group; Scorpion Group and Limbunya, Birrindudu, McArthur, Mt. Rigg and Mt. Albert Groups and Bungle Bungle Dolomite; Tolmer and Bullita Groups; Moora and Bangemall Groups; Kai Ki Beds, Louisa Downs, Mount House and Albert Edward Groups.Stromatolite diversity shows a decline in the number of taxa at about 1.1. Ga in the Bangemall Group. More data are required to determine whether this decline is universal or specific to the Bangemall Group. This study indicates that a stromatolite biostratigraphy for Western Australia is feasible and is consistent with data from other parts of Australia. Thus emphasis on correlation should be placed on the stromatolite form rather than the group, and intercontinental correlations should be attempted only when local biostratigraphic schemes have been firmly established.  相似文献   
95.
The Delaware River Estuary (DRE) is a cornerstone of industrialization, shipping, and urban usage, and has a long history of human impact on pollution and recovery. Mercury (Hg) is a contaminant of concern in the DRE based upon concentrations in some fish samples that were found to exceed State and Federal fish tissue criteria. Methylation of Hg often follows a seasonal pattern as its production is biologically mediated. Surveys were conducted in November 2011, April 2012, and July 2012 to assess this effect. We sampled surface and bottom water at six sites spanning the estuarine turbidity maximum (ETM) in the main channel of the river, plus three sediment sites at shallow, subtidal locations. Our results indicate there is a clear seasonal increase in both water column and sediment methylmercury (MeHg) and %MeHg concentrations in the ETM during July. Water-column-filtered total mercury (HgT), suspended particle HgT, and MeHg concentrations were found to fluctuate little with location or season in the ETM. In contrast, sediment MeHg, water-column-filtered MeHg, and pore water HgT varied seasonally. Furthermore, pore water MeHg levels were elevated in concert with increased k meth rates in July. Estimated river input and sediment and atmospheric depositional MeHg flux were compared seasonally. River flux was more than an order of magnitude higher than sediment flux in April, coinciding with higher fluvial transport. However, during July, river flux decreases and sediment flux becomes a larger relative source. This trend has potential implications for fish and other biota residing in the DRE during summer.  相似文献   
96.
Geospatial data sciences have emerged as critical requirements for high-priority application solutions in diverse areas, including, but not limited to, the mitigation of natural and man-made disasters. Three sets of metrics, adopted or customized from geo-statistics, applied meteorology and signal processing, are tested in terms of their ability to evaluate geospatial datasets, specifically two population databases commonly used for disaster preparedness and consequence management. The two high-resolution, grid-based population datasets are the following: The LandScan dataset available from the Geographic Information Science and Technology (GIST) group at the Oak Ridge National Laboratory (ORNL), and the Gridded Population of the World (GPW) dataset available from the Center for International Earth Science Information Network (CIESIN) group at Columbia University. Case studies evaluate population data across the globe, specifically, the metropolitan areas of Washington DC, USA, Los-Angeles, USA, and Houston, USA, and London, UK, as well as the country of Iran. The geospatial metrics confirm that the two population datasets have significant differences, especially in the context of their utility for disaster readiness and mitigation. While this paper primarily focuses on grid based population datasets and disaster management applications, the sets of metrics developed here can be generalized to other geospatial datasets and applications. Future research needs to develop metrics for geospatial and temporal risks and associated uncertainties in the context of disaster management. The U. S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   
97.
This paper describes a new initiative in coastal management in northeastern Tanzania. The region is within the equatorial part of the Western Indian Ocean. The priority environmental issues being faced include declining fish catches, use of destructive fishing techniques, mangrove cutting and coastal erosion. There is a widespread perception among the users of the coastal resources that management of these issues is inadequate. This programme initiative is developing flexible, community-based approaches to identifying the problems and to take achievable actions. The programme provides training in a wide range of skills and appropriate technical methods for government officials, extension workers and villagers. A collaborative process is evolving that includes participatory appraisals, village environmental committees, facilitation by government extension workers, technical advise and supervision by district technical teams, and regional-wide workshops with key players. Village initiatives taken so far include new by-laws, gear inspection, reef zoning and closures. A number of village mariculture projects are being piloted.  相似文献   
98.
Satellite-measured along-track and gridded sea surface height (SSH) anomaly products from AVISO are compared with in situ SSH anomaly measurements from an array of 43 pressure-recording inverted echo sounders (PIESs) in the Kuroshio Extension. PIESs measure bottom pressure (P bot) and round-trip acoustic travel time from the sea floor to the sea surface (τ). The P bot and τ measurements are used to estimate, respectively, the mass-loading and steric height variations in SSH anomaly. All comparisons are made after accurate removal of tidal components from all data. Overall good correlations are found between along-track and PIES-derived SSH anomalies with mean correlation coefficient of 0.97. Comparisons between the two measurements reveal that the mass-loading component estimated from P bot is relatively small in this geographical region. It improves regression coefficients about 5?% and decreases mean root-mean-squared (rms) differences from 7.8 to 6.4?cm. The AVISO up-to-date gridded product, which merges all available satellite measurements of Jason-1, Envisat, Geosat Follow-On, and TOPEX/Poseidon interlaced, shows better correlations and smaller rms differences than the AVISO reference gridded product, which merges only Jason-1 and Envisat. Especially, the up-to-date gridded product reveals 6.8?cm rms improvement on average at sites away from Jason-1 ground tracks. Gridded products exhibit low correlation (0.75–0.9) with PIES-derived SSH in a subregion where the SSH fluctuations have relatively high energy at periods shorter than 20?days.  相似文献   
99.
100.
During the past decade, research on large in‐stream wood has expanded beyond North America's Pacific Northwest to diverse environments and has shifted toward increasingly holistic perspectives that incorporate processes of wood recruitment, retention, and loss at scales from channel segments to entire watersheds. Syntheses of this rapidly expanding literature can be facilitated by agreement on primary variables and methods of measurement. In this paper we address these issues by listing the variables that we consider fundamental to studies of in‐stream wood, discussing the sources of variability in their measurement, and suggesting more consistency in future studies. We recommend 23 variables for all studies of in‐stream wood, as well as another 12 variables that we suggest for studies with more specific objectives. Each of these variables relates either to the size and characteristics of in‐stream wood, to the geomorphic features of the channel and valley, or to the ecological characteristics of the riparian zone adjacent to the study reach. The variables were derived from an overview of those cited in the literature and from our collective field experiences. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号