首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   21篇
  国内免费   5篇
大气科学   32篇
地球物理   70篇
地质学   115篇
海洋学   29篇
天文学   76篇
自然地理   36篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   6篇
  2018年   12篇
  2017年   14篇
  2016年   17篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   19篇
  2011年   27篇
  2010年   26篇
  2009年   22篇
  2008年   24篇
  2007年   18篇
  2006年   14篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有358条查询结果,搜索用时 234 毫秒
351.

Background  

The speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC) in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis.  相似文献   
352.
Geographers have long been associated with mapping and cartography, because the visual representation of space fits neatly into the wide-ranging discipline that engages both the physical and the social worlds. Mapmaking remained in the domain of experts for centuries until the advent of new mapping technologies, which have widened the possibilities for mapmaking from experts and nonexperts alike. Simply widening participation in mapmaking does not necessarily democratize the knowledge-production process, however, as scholars have recently argued. What is required, we suggest, are critically trained geographers who take seriously both the conventions of professional cartography and the power relations embedded in and reflected in the map-making process and in maps themselves. We name participatory action mapping (PAM) as a methodology that seeks to be as effective in advancing the mapping needs of the public as it is critical in evaluating the processes through which maps are produced. PAM is a practice of civic engagement that borrows from community mapping and public participatory geographic information systems and that is deeply informed by participatory action research. We highlight the contours of PAM through a case study of our work with the Westside Atlanta Land Trust in Atlanta, Georgia.  相似文献   
353.
To shed light on the mechanism of formation of nanophase iron particles (npFe) in space-weathered materials from airless bodies, we analyzed exsolved and unexsolved space-weathered lunar pyroxenes from Apollo 17 sample 71501. The exsolved pyroxene allowed for the observation of the effects of space weathering on similar mineral phases with variable composition. Using coordinated scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy (EELS), we determined that two coexisting pyroxenes in the exsolved grain showed systematic variations in response to space weathering, despite equivalent exposure conditions. The npFe in the space-weathered rim of augite lamellae were smaller and fewer than the npFe in the rim of pigeonite lamellae. EELS spectrum imaging revealed the presence and heterogeneous distribution of Fe0, Fe2+, and Fe3+ in the exsolved pyroxene. Metallic iron occurred in the npFe, a mixture of Fe2+ and Fe3+ occurred in the pigeonite lamellae, and the augite lamellae contained virtually all Fe3+. Approximately 50% of the total Fe measured in the exsolved pyroxene grain was ferric. Partitioning of Fe2+ and Fe3+ among the lamellae is invoked to explain the difference in npFe development in pigeonite and augite. The results of this study, the first to identify Fe3+ in a crystalline lunar ferromagnesian silicate, have implications for our understanding of how space weathering might proceed in oxidized phases. Furthermore, the discovery of an Fe3+-rich pyroxene also supports attribution of the 0.7 μm absorption feature observed in Galileo Solid State Imager data to oxidized Fe in clinopyroxenes.  相似文献   
354.
A suite of sulfate minerals were characterized spectrally, compositionally, and structurally in order to develop spectral reflectance-compositional-structural relations for this group of minerals. Sulfates exhibit diverse spectral properties, and absorption-band assignments have been developed for the 0.3-26 μm range. Sulfate absorption features can be related to the presence of transition elements, OH, H2O, and SO4 groups. The number, wavelength position, and intensity of these bands are a function of both composition and structure. Cation substitutions can affect the wavelength positions of all major absorption bands. Hydroxo-bridged Fe3+ results in absorption bands in the 0.43, 0.5, and 0.9 μm regions, while the presence of Fe2+ results in absorption features in the 0.9-1.2 μm interval. Fundamental SO bending and stretching vibration absorption bands occur in the 8-10, 13-18, and 19-24 μm regions (1000-1250, 550-770, and 420-530 cm−1). The most intense combinations and overtones of these fundamentals are found in the 4-5 μm (2000-2500 cm−1) region. Absorption features seen in the 1.7-1.85 μm interval are attributable to HOH/OH bending and translation/rotation combinations, while bands in the 2.1-2.7 μm regions can be attributed to H2O- and OH-combinations as well as overtones of SO bending fundamentals. OH- and H2O-bearing sulfate spectra are fundamentally different from each other at wavelengths below ∼6 μm. Changes in H2O/OH content can shift SO band positions due to change in bond lengths and structural rearrangement. Differences in absorption band wavelength positions enable discrimination of all the sulfate minerals used in this study in a number of wavelength intervals. Of the major absorption band regions, the 4-5 μm region seems best for identifying and discriminating sulfates in the presence of other major rock-forming minerals.  相似文献   
355.
Natural Hazards - About 15% of the world’s population suffers from some kind of disability. In addition to experiencing high rates of poverty, exclusion and lack of access to education,...  相似文献   
356.
Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.  相似文献   
357.
The relationship between surface bubble composition and gas flux to the atmosphere was examined at five large seeps from the Coal Oil Point seep field (Santa Barbara Channel, CA, USA). The field research was conducted using a flux buoy designed to simultaneously measure the surface bubbling gas flux and the buoy’s position with differential GPS, and to collect gas samples. Results show that the flux from the five seeps surveyed a total of 11 times ranged from 800–5,500 m3 day?1. The spatial distribution of flux from the five seeps was well described by two lognormal distributions fitted to two flux ranges. The seafloor and sea surface composition of bubbles differed, with the seafloor bubbles containing significantly more CO2 (3–25%) and less air (N2 and O2). At the sea surface, the mole fraction of N2 correlated directly with O2 (R 2 = 0.95) and inversely with CH4 (R 2 = 0.97); the CO2 content was reduced to the detection limit (<0.1%). These data demonstrate that the bubble composition is modified by gas exchange during ascent: dissolved air enters, and CO2 and hydrocarbon gases leave the bubbles. The mean surface composition at the five seeps varied with water depth and gas flux, with more CH4 and higher CH4/N2 ratios found in shallower seeps with higher flux. It is suggested that the CH4/N2 ratio is a good proxy for total or integrated gas loss from the rising bubbles, although additional study is needed before this ratio can be used quantitatively.  相似文献   
358.
The howardite‐eucrite‐diogenite (HED) clan of meteorites, which most likely originate from the asteroid Vesta, provide an opportunity to combine in‐depth sample analysis with the comprehensive remote‐sensing data set from NASA's recent Dawn mission. Miller Range (MIL) 11100, an Antarctic howardite, contains diverse rock and mineral fragments from common HED lithologies (diogenites, cumulate eucrites, and basaltic eucrites). It also contains a rare pyroxferroite‐bearing lithology—not recognized in HED until recently—and rare Mg‐rich (Fo86‐91) olivine crystals that possibly represent material excavated from the Vestan mantle. Clast components underwent different histories of thermal and impact metamorphism before being incorporated into this sample, reflecting the diversity in geological histories experienced by different parts of Vesta. The bulk chemical composition and petrography of MIL 11100 suggest that it is akin to the fragmental howardite meteorites. The strong lithological heterogeneity across this sample suggests that at least some parts of the Vestan regolith show heterogeneity on the mm‐scale. We combine the outcomes of this study with data from NASA's Dawn mission and hypothesize on possible source regions for this meteorite on the surface of Vesta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号