首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   21篇
  国内免费   5篇
大气科学   32篇
地球物理   70篇
地质学   115篇
海洋学   29篇
天文学   76篇
自然地理   36篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   6篇
  2018年   12篇
  2017年   14篇
  2016年   17篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   19篇
  2011年   27篇
  2010年   26篇
  2009年   22篇
  2008年   24篇
  2007年   18篇
  2006年   14篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
291.
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines – the 'quasar fraction'– as a function of redshift and of radio and narrow-emission-line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow-line and radio) than it is on redshift. Above a narrow [O  ii ] emission-line luminosity of log10( L [O  ii ]/W)≳35 [or radio luminosity log10( L 151/W Hz−1 sr−1)≳ 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle θ trans≈53°. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in θ trans and/or a gradual increase in the fraction of lightly reddened (0≲ A V ≲5) lines of sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low-luminosity radio sources which, like M87, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.  相似文献   
292.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   
293.
Downed large wood (LW) in floodplains provides habitat and nutrients for diverse organisms, influences hydraulics and sedimentation during overbank flows, and affects channel form and lateral migration. Very few studies, however, have quantified LW volumes in floodplains that are unaltered by human disturbance. We compare LW volumes in relatively unaltered floodplains of semiarid boreal lowland, subtropical lowland, and semiarid temperate mountain rivers in the United States. Average volumes of downed LW are 42.3 m3 ha?1, 50.4 m3 ha?1, and 116.3 m3 ha?1 in the semiarid boreal, subtropical, and semiarid temperate sites, respectively. Observed patterns support the hypothesis that the largest downed LW volumes occur in the semiarid temperate mountain sites, which is likely linked to a combination of moderate‐to‐high net primary productivity, temperature‐limited decomposition rates, and resulting slow wood turnover time. Floodplain LW volumes differ among vegetation types within the semiarid boreal and semiarid temperate mountain regions, reflecting differences in species composition. Lateral channel migration and flooding influence vegetation communities in the semiarid boreal sites, which in turn influences floodplain LW loads. Other forms of disturbance such as fires, insect infestations, and blowdowns can increase LW volumes in the semiarid boreal and semiarid temperate mountain sites, where rates of wood decay are relatively slow compared with the subtropical lowland sites. Although sediment is the largest floodplain carbon reservoir, floodplain LW stores substantial amounts of organic carbon and can influence floodplain sediment storage. In our study sites, floodplain LW volumes are lower than those in adjacent channels, but are higher than those in upland (i.e. non‐floodplain) forests. Given the important ecological and physical effects of floodplain LW, efforts to add LW to river corridors as part of restoration activities, and the need to quantify carbon stocks within river corridors, we urge others to quantify floodplain and instream LW volumes in diverse environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
294.
Natural Hazards - Rainfall extreme value analysis provides information that has been crucial in characterizing risk, designing successful infrastructure systems, and ultimately protecting people...  相似文献   
295.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   
296.
Fourier transform infrared (FTIR) spectroscopy and cathodoluminescence (CL) imaging techniques, combined with electron microprobe analyses, have been used to determine the physical state of feldspathic phases that have been subject to varying levels of shock in the grouped lunar meteorites Miller Range 090034, 090070, and 090075. Six feldspathic phases have been identified based on spectral, textural, and chemical properties. A specific infrared wavelength band ratio (1064/932 cm?1 equivalent to 9.40/10.73 μm), chosen because it can distinguish between some of the feldspathic phases, can be used to estimate the pressure regimes experienced by these phases. In addition, FTIR spatial mapping capabilities allow for visual comparison of variably shocked phases within the samples. By comparing spectral and compositional data, the origin and shock history of this lunar meteorite group has been determined, with each of the shocked feldspathic phases being related to events in its geological evolution. As such, we highlight that FTIR spectroscopy can be easily employed to identify shocked feldspathic phases in lunar samples; estimate peak shock pressures; and when compared with chemical data, can be used to investigate their shock histories.  相似文献   
297.
Coastal managers presently rely on a limited set of decision support tools for designing marine protected areas (MPAs) or subzones. A new approach, defining potential sizes and shapes of MPA boundaries early in the design process, is presented in a case study. A sliding window of the same dimensions as potential boundary configurations was regularly shifted throughout the study area and used to quantify variables representing preferred biophysical and socioeconomic characteristics. The technique offers advantages in spatially restricted areas, areas where habitat connectivity is critical, and situations wherein providing stakeholders with an up-front understanding of potential boundaries is required.  相似文献   
298.
Lunar breccias preserve the records of geologic processes on the Moon. In this study, we report the occurrence, petrography, mineralogy, and geologic significance of the observed secondary olivine veinlets in lunar feldspathic breccia meteorite Northwest Africa (NWA) 11273. Bulk‐rock composition measurements show that this meteorite is geochemically similar to other lunar highland meteorites. In NWA 11273, five clasts are observed to host veinlets that are dominated by interconnecting olivine mineral grains. The host clasts are mainly composed of mafic minerals (i.e., pyroxene and olivine) and probably sourced from a basaltic lithology. The studied olivine veinlets (~5 to 30 μm in width) are distributed within the mafic mineral host, but do not extend into the adjacent plagioclase. Chemically, these olivine veinlets are Fe‐richer (Fo41.4–51.9), compared with other olivine grains (Fo54.3–83.1) in lithic clasts and matrix of NWA 11273. By analogy with the secondary olivine veinlets observed in meteorites from asteroid Vesta (howardite–eucrite–diogenite group samples) and lunar mare samples, our study suggests that the newly observed olivine veinlets in NWA 11273 are likely formed by secondary deposition from a lunar fluid, rather than by crystallization from a high‐temperature silicate melt. Such fluid could be sulfur‐ and phosphorous‐poor and likely had an endogenic origin on the Moon. The new occurrence of secondary olivine veinlets in breccia NWA 11273 reveals that the fluid mobility and deposition could be a previously underappreciated geological process on the Moon.  相似文献   
299.
The Niwot Ridge and Green Lakes Valley (NWT) long-term ecological research (LTER) site collects environmental observations spanning both alpine and subalpine regimes. The first observations began in 1952 and have since expanded to nearly 300 available datasets over an area of 99 km2 within the north-central Colorado Rocky Mountains that include hydrological (n = 101), biological (n = 79), biogeochemical (n = 62), and geographical (n = 56) observations. The NWT LTER database is well suited to support hydrologic investigations that require long-term and interdisciplinary data sets. Experimentation and data collection at the NWT LTER are designed to characterize ecological responses of high-mountain environments to changes in climate, nutrients, and water availability. In addition to the continuation of the many legacy NWT datasets, expansion of the breadth and utility of the NWT LTER database is driven by new initiatives including (a) a catchment-scale sensor network of soil moisture, temperature, humidity, and snow-depth observations to understand hydrologic connectivity and (b) snow-albedo alteration experiments using black sand to evaluate the effects of snow-disappearance on ecosystems. Together, these observational and experimental datasets provide a substantial foundation for hydrologic studies seeking to understand and predict changes to catchment and local-scale process interactions.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号