首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   2篇
地球物理   20篇
地质学   25篇
海洋学   4篇
天文学   3篇
自然地理   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   3篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   8篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
51.
The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement‐derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size‐sorting and subtle, discontinuous layers occur locally. Quartz and K‐feldspar are the main sand‐size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K‐feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer‐grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean‐resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.  相似文献   
52.
This paper presents techniques for studying the influence of the atmospheric variables for the explanation of ozone concentrations. A methodology is described for separating the different time scale components in time series of ozone, namely, the global-term component which describes the long and seasonal variations, and the synoptic-scale component. We prove that the decomposition of the time series of ozone and other atmospheric variables is essential for the analysis. The results indicate that solar radiation is the only main factor between all the atmospheric variables for the global and the synoptic-scale component of the ozone time series. Most of the total variance of ozone can be explained by the atmospheric variables, which makes possible the precise estimation of human effect on ozone. In case the solar radiation data are not available, lagged temperature can be used as a supplement of solar radiation.  相似文献   
53.
Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584-m-long DEEP sediment succession and a comparison to a 197-m-long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26Al/10Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a−1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe’s presumed oldest extant freshwater lake.  相似文献   
54.
Natural Hazards - In this study, we present the first findings of the potential utility of miniaturized light and detection ranging (LiDAR) scanners mounted on unmanned aerial vehicles (UAVs) for...  相似文献   
55.
56.
57.
As the global need for mineral resources is constantly rising and the exploitable concentrations of these resources tend to become increasingly complex to explore and exploit, the mining industry is in a constant quest for innovative and cost-effective exploration solutions. In this context, and in the framework of the Smart Exploration action, an integrated passive seismic survey was launched in the Gerolekas bauxite mining site in Central Greece. A passive seismic network, consisting of 129 three-component short-period stations was installed and operated continuously for 4 months. The acquired data permitted detection of approximately 1000 microearthquakes of very small magnitude (duration magnitude ranging between –1.5 and 2.0), located within or at a very close distance from the study area. We use this microseismicity as input for the application of passive seismic interferometry for reflection retrieval, using the body waves (P- and S-wave coda) of the located microearthquakes. We retrieve by autocorrelation zero-offset virtual reflection responses, per component, below each of the recording stations. We process the acquired results using reflection processing techniques to obtain zero-offset time and depth sections, both for P- and for S-waves. In the context of the present work, we evaluate one of the acquired depth sections, using an existing seismic line passing through the Gerolekas passive seismic network, and we perform forward modelling to assess the quality and value of the acquired results. We confirm that passive seismic reflected-wave interferometry could constitute a cost-effective and environmentally friendly innovative exploration alternative, especially in cases of difficult exploration settings.  相似文献   
58.
New three-dimensional numerical non-hydrostatic model with a free surface that was designed for modelling the bottom and bank stability subjected by ship propeller jets is presented. Unlike all known models, it describes three-dimensional fields of velocities generated by ship propellers, turbulence intensity and length scale in the given domain of arbitrary bottom and coastal topography. Results of simulations are compared with the laboratory experiments.  相似文献   
59.
A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed. In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response of multiply‐supported structures. In the second approach, simulated motions are conditioned on the segmented record itself and exhibit increasing variance with distance from the site of the observation. For both approaches, example simulated motions are presented for an existing bridge model employing two alternatives for modeling the local soil response: i) idealizing each soil‐column as a single‐degree‐of‐freedom oscillator, and ii) employing the theory of vertical wave propagation in a single soil layer over bedrock. The selection of parameters in the simulation procedure and their effects on the characteristics of the generated motions are discussed. The method is validated by comparing statistical characteristics of the synthetic motions with target theoretical models. Response spectra of the simulated motions at each support are also examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
60.
A database of the electron temperature (Te) comprising of most of the available LEO satellite measurements is used for studying the solar activity variations of Te. The Te data are grouped for two levels of solar activity (low LSA and high HSA), five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the Te values we obtain variation of Te along magnetic field lines and heat flux for LSA and HSA. We have found that Te increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the Te response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between Te and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号