首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   22篇
  国内免费   5篇
测绘学   7篇
大气科学   25篇
地球物理   61篇
地质学   122篇
海洋学   31篇
天文学   29篇
自然地理   45篇
  2023年   1篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   21篇
  2017年   12篇
  2016年   18篇
  2015年   17篇
  2014年   10篇
  2013年   21篇
  2012年   18篇
  2011年   15篇
  2010年   20篇
  2009年   15篇
  2008年   18篇
  2007年   12篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1969年   1篇
排序方式: 共有320条查询结果,搜索用时 421 毫秒
311.
312.
313.
314.
Patterns in species geographic range size are relatively well-known for vertebrates,but still poorly known for plants.Contrasts of these patterns between groups have rarely been investigated.With a detailed flora and fauna distribution database of Xinjiang,China,we used regression methods,redundancy analysis and random forests to explore the relationship of environment and body size with the geographic range size of plants,mammals and birds in Xinjiang and contrast these patterns between plants and animals.We found positive correlations between species range size and body size.The range size of plants was more influenced by water variables,while that of mammals and birds was largely influenced by temperature variables.The productivity variable,i.e.,Enhanced Vegetation Index(EVI)was far more correlated with range size than climatic variables for both plants and animals,suggesting that vegetation productivity inferred from remote sensing data may be a good predictor of species range size for both plants and animals.  相似文献   
315.
Advances in the chemical, crystallographic and isotopic characterisation of geological and environmental materials can often be ascribed to technological improvements in analytical hardware or to innovative approaches to data acquisition and/or its interpretation. This biennial review addresses key laboratory methods that form much of the foundation for analytical geochemistry; again, this contribution is presented as a compendium of laboratory techniques. We highlight advances that have appeared since January 2012 and that are of particular significance for the chemical and isotopic characterisation of geomaterials. Prominent scientists from the selected analytical fields present publications they judge to be particular noteworthy, providing background information about the method and assessing where further opportunities might be anticipated. In addition to the well‐established technologies such as thermal ionisation mass spectrometry and plasma emission spectroscopy, this publication also presents new or rapidly growing methods such as electron backscattered diffraction analysis and atom probe tomography – a very sensitive method providing atomic scale information.  相似文献   
316.
Palynological and palynofacies analyses were carried out on some middle–upper Cretaceous samples from the El-Noor-1X borehole, northern Western Desert, Egypt. Palynological age has lead to a refinement of the original ages suggested by the drilling company. Upper Albian–Lower Cenomanian, Upper Cenomanian, and Turonian–Coniacian were recognized. The palaeoenvironment was interpreted on the basis of the ecological preferences of the palynomorphs. It was fluctuating between marginal to inner-middle shelf environment. Distribution of araucaroid pollen and xerophytes suggests that arid or semi-arid paleclimate prevailed during the deposition of the studied sediments. A warm tropical palaeoclimate is suggested on the basis of abundance of hygrophilous plants. Based on the recovered palynological organic matter, two palynofacies were recognized: palynofacies A for the Bahariya Formation, which suggests kerogen type III, and palynofacies B for the upper Bahariya and Abu Roash Formations, which suggests kerogen type IX. Data gathered from the theoretically estimated vitrinite reflectances, which are based on spore/pollen coloration, and visual pterographic kerogen analysis are used to define the source rock potentialities of the studied sediments.  相似文献   
317.
Ten boreholes drilled in Ubhur area up to the depth of bedrock indicted the shallow depth of bedrock where the average depth ranges between 10 and 15 m. The standard penetration test N-values of these boreholes were measured and averaged. Based on N-values to the depth of bedrock, Ubhur area can be classified as site class C and D. Multichannel analysis of surface waves technique has been applied along seventy six profiles using 24-channel geophone array and 4.5Hz vertical geophones with 1m geophone spacing and sledgehammer and/or weight drop as seismic energy sources. Values of shear wave velocity to 30 m are calculated and then averaged (Vs30) where it ranges between 310.08 m/s and 1139.8 m/s. Therefore, Ubhur area can be classified into site class B, C and D based on site classification of the national earthquake hazards reduction program (NEHRP) recommendations. Accordingly, the greatest part of the study area falls in site class C while class B and D covered limited areas in the western and the eastern parts respectively. Depending on the shallow depth of bedrock in the study area, the Vs30 parameter is not applicable in the study area so the average values of Vs for the soil thickness, excluding the bedrock, have been calculated and mapped for site class C and D only. So Vs30 approach is not applicable for areas with shallow depth of bedrock which gives higher classification.  相似文献   
318.
Relative permeability and resistivity index are important parameters for the exploration and development in a tight sandstone gas field. In the splitting method which uses permeability (K), reservoir thickness (H), and relative permeability (K), briefly referred to as the KHK splitting method, the accuracy of the relative permeability is crucial. According to the relationship between resistivity index and relative permeability of the Mesozoic Lower Safa Formation at Obaiyed Field in the Western Desert of Egypt, we improved the split method and made it more in line with the real situation by adopting Pairoys’ model which is more suitable to our study area. In this paper, we use a radial basis function (RBF) to establish the relationship between logging data and the gas production split point to point in tight sandstone gas reservoirs. To compare with the result by support vector regression (SVR), our method is better as indicated by mean absolute error values. In order to solve the problem that the relative permeability is difficult to obtain in the well logging evaluation, we also provide a convenient method and application example.  相似文献   
319.
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site.Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.  相似文献   
320.
A carving of the indoor main altar of St. Vitus Cathedral in Prague (Czech Republic) is made of the opuka stone—a clayey–calcareous silicite—which now exhibits the development of decay phenomena such as the formation of salt-laden case-hardened subsurface layer (approx. 150 mm thick), with detachment of the case-hardened layer manifested by blistering and/or flaking. Formation of this gypsum-rich layer is linked to the reaction of components (SO2) from polluted air (both outdoor and indoor) and from the rock itself (calcium ion from calcite). Development of brittle damage in the subsurface layer and underlying stone is interpreted based on the results from previous environmental monitoring in the Cathedral’s interior, which indicated highly fluctuating temperature and humidity, resulting in a hygrothermal stress in the material described by the “double-layer sandwich” model. The sensitivity of the studied stone to the above-mentioned processes is evidenced by its microstructural properties, specifically parameters of the pore spaces which indicate an extremely high susceptibility to damage by the actions of freezing water and/or salt crystallisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号