首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   19篇
  国内免费   2篇
测绘学   12篇
大气科学   56篇
地球物理   166篇
地质学   271篇
海洋学   56篇
天文学   85篇
综合类   3篇
自然地理   54篇
  2021年   7篇
  2020年   7篇
  2018年   11篇
  2016年   12篇
  2014年   17篇
  2013年   25篇
  2012年   20篇
  2011年   20篇
  2010年   13篇
  2009年   29篇
  2008年   29篇
  2007年   24篇
  2006年   31篇
  2005年   22篇
  2004年   22篇
  2003年   15篇
  2002年   22篇
  2001年   18篇
  2000年   7篇
  1999年   13篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   10篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   8篇
  1983年   11篇
  1982年   9篇
  1981年   7篇
  1980年   8篇
  1977年   12篇
  1976年   7篇
  1975年   7篇
  1974年   8篇
  1972年   11篇
  1970年   7篇
  1968年   6篇
  1964年   5篇
  1959年   5篇
  1955年   7篇
  1954年   9篇
  1952年   6篇
  1950年   8篇
  1948年   8篇
排序方式: 共有703条查询结果,搜索用时 531 毫秒
131.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
132.
Water runoff and sediment transport from agricultural uplands are substantial threats to water quality and sustained crop production. To improve soil and water resources, farmers, conservationists, and policy‐makers must understand how landforms, soil types, farming practices, and rainfall interact with water runoff and soil erosion processes. To that end, the Iowa Daily Erosion Project (IDEP) was designed and implemented in 2003 to inventory these factors across Iowa in the United States. IDEP utilized the Water Erosion Prediction Project (WEPP) soil erosion model along with radar‐derived precipitation data and government‐provided slope, soil, and management information to produce daily estimates of soil erosion and runoff at the township scale (93 km2 [36 mi2]). Improved national databases and evolving remote sensing technology now permit the derivation of slope, soil, and field‐level management inputs for WEPP. These remotely sensed parameters, along with more detailed meteorological data, now drive daily WEPP hillslope soil erosion and water runoff estimates at the small watershed scale, approximately 90 km2 (35 mi2), across sections of multiple Midwest states. The revisions constitute a substantial improvement as more realistic field conditions are reflected, more detailed weather data are utilized, hill slope sampling density is an order of magnitude greater, and results are aggregated based on surface hydrology enabling further watershed research and analysis. Considering these improvements and the expansion of the project beyond Iowa it was renamed the Daily Erosion Project (DEP). Statistical and comparative evaluations of soil erosion simulations indicate that the sampling density is adequate and the results are defendable. The modeling framework developed is readily adaptable to other regions given suitable inputs. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
133.
134.
To better image deformation structures within the inner accretionary wedge of the Nankai Trough, Japan, we apply common reflection angle migration to a legacy two-dimensional seismic data set acquired with a 6 km streamer cable. In this region, many seismic surveys have been conducted to study the seismogenic zone related to plate subduction. However, the details of the accreted sediments beneath the Kumano forearc basin are still unclear due to the poor quality of seismic images caused by multiple reflections, highly attenuated signals, and possibly complex geological structures. Generating common image gathers in the subsurface local angle domain rather than the surface offset domain is more advantageous for imaging geological structures that involve complex wave paths and poor illumination. By applying this method, previously unseen structures are revealed in the thick accreted sediments. The newly imaged geometric features of reflectors, such as the folds in the shallow part of the section and the deep reflectors with stepwise discontinuities, imply deformation structures with multiple thrust faults. The reflections within the deep accreted sediments (approximately 5 km) are mainly mapped to far angles (30°–50°) in the common reflection angles, which correspond to the recorded offset distances greater than 4.5 km. This result indicates that the far offset/angle information is critical to image the deformation structures at depth. The new depth image from the common reflection angle migration provides seismic evidence of multiple thrust faults and their relationship with the megathrust fault that is essential for understanding the structure and evolution of the Nankai Trough seismogenic zone.  相似文献   
135.
In 1997, seismic surveys in the troughs off northwest and north Iceland indicated the presence of a major, regional sub‐bottom reflector that can be traced over large areas of the shelf. Cores taken in 1997, and later in 1999 on the IMAGES V cruise, penetrated through the reflector. In core MD99‐2269 in Húnaflóaáll, this reflector is shown to be represented by a basaltic tephra with a geochemical signature and radiocarbon age correlative with the North Atlantic‐wide Saksunarvatn tephra. We trace this tephra throughout northwest Iceland in a series of marine and lake cores, as well as in terrestrial sediments; it forms a layer 1 to 25 cm thick of fine‐ to medium‐grained basaltic volcanic shards. The base of the tephra unit is always sharp but visual inspection and other measurements (carbonate and total organic carbon weight %) indicate a more diffuse upper boundary associated with bioturbation and with sediment reworking. Off northwest Iceland the Saksunarvatn tephra has distinct sediment magnetic properties. This is evident as a dramatic reduction in magnetic susceptibility, an increase in the frequency dependant magnetic susceptibility and ‘hard’ magnetisation in a −0.1T IRM backfield. Geochemical analyses from 11 sites indicate a tholeiitic basalt composition, similar to the geochemistry of a tephra found in the Greenland ice‐core that dates to 10 180 ± 60 cal. yr BP, and which was correlated with the 9000 14C yr BP Saksunarvatn tephra. We present accelerator mass spectrometry 14C dates from the marine sites, which indicate that the ocean reservoir correction is close to ca. 400 yr at 9000 14C yr BP off northwest Iceland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
136.
The groundwater interbasin flow, Qy, from the north of Yucca Flat into Yucca Flat simulated using the Death Valley Regional Flow System (DVRFS) model greatly exceeds assessments obtained using other approaches. This study aimed to understand the reasons for the overestimation and to examine whether the Qy estimate can be reduced. The two problems were tackled from the angle of model uncertainty by considering six models revised from the DVRFS model with different recharge components and hydrogeological frameworks. The two problems were also tackled from the angle of parametric uncertainty for each model by first conducting Morris sensitivity analysis to identify important parameters and then conducting Monte Carlo simulations for the important parameters. The uncertainty analysis is general and suitable for tackling similar problems; the Morris sensitivity analysis has been utilized to date in only a limited number of regional groundwater modeling. The simulated Qy values were evaluated by using three kinds of calibration data (i.e., hydraulic head observations, discharge estimates, and constant‐head boundary flow estimates). The evaluation results indicate that, within the current DVRFS modeling framework, the Qy estimate can only be reduced to about half of the original estimate without severely deteriorating the goodness‐of‐fit to the calibration data. The evaluation results also indicate that it is necessary to develop a new hydrogeological framework to produce new flow patterns in the DVRFS model. The issues of hydrogeology and boundary flow are being addressed in a new version of the DVRFS model planned for release by the U.S. Geological Survey.  相似文献   
137.
For navigation in deep ocean the most important navaids are self contained dead reckoning systems (DRS) such as classical DRS with log and compass or Doppler‐DRS or inertial navigation system (INS) and the external radio navaids LORAN, Omega and Navy Navigation Satellite System (NNSS). These navaids cannot satisfy the requirements for precise surveying if they are used in the conventional manner. Accuracy can be increased by integration of the DRS with the external navaids by a computer which estimates best values of position, velocity, etc. from all available data. The DRS is used as reference system and the external navaids are used for control measurements. The measurements are compared with the same quantities computed from the positions, which are indicated of the DRS. The differences between the measured and the computed values are described by error models of the integrated navaids and processed by a filter to estimate best values of the errors of the DRS and to make corresponding corrections. The principles of least square filtering are described in detail for integrated Inertial/LORAN‐C and Inertial/Omega navigation.  相似文献   
138.
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.  相似文献   
139.
This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.  相似文献   
140.
The Gulf of Tonkin coastline migrated at an average rate of ca 60 m year?1 landward during Holocene sea‐level rise (20 to 8 ka). Due to a combination of rapid coastline migration and undersupply of sand, neither coastal barriers nor tidal sand bars developed at the mouth of the Red River incised valley. Only a 30 to 80 cm thick sandy interval formed at the base of full‐marine deposits. Thus, the river mouth represented a mud‐dominated open funnel‐shaped estuary during transgression. At the base of the valley fill, a thin fluvial lag deposit marks a period of lowered sea‐level when the river did not reach geomorphic equilibrium and was thus prone to erosion. The onset of base‐level rise is documented by non‐bioturbated to sparsely bioturbated mud that occasionally contains pyrite indicating short‐term seawater incursions. Siderite in overlying deposits points to low‐salinity estuarine conditions. The open funnel‐shaped river mouth favoured upstream incursion of seawater that varied inversely to the seasonal strongly fluctuating discharge: several centimetres to a few tens of centimetres thick intervals showing marine or freshwater dominance alternate, as indicated by bioturbational and physical sedimentary structures, and by the presence of Fe sulphides or siderite, respectively. Recurrent short‐term seawater incursions stressed the burrowing fauna. The degree of bioturbation increases upward corresponding to increasing marine influence. The uppermost estuarine sediments are completely bioturbated. The estuarine deposits aggraded on average rapidly, up to several metres kyr?1. Siphonichnidal burrows produced by bivalves, however, document recurrent episodes of enhanced deposition (>0·5 m) and pronounced erosion (<1 m) that are otherwise not recorded. The slope of the incised valley affected the sedimentary facies. In steep valley segments, the marine transgressive surface (equivalent to the onset of full‐marine conditions) is accentuated by the Glossifungites ichnofacies, whereas in gently sloped valley segments the marine transgressive surface is gradational and bioturbated. Marine deposits are completely bioturbated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号