首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32588篇
  免费   526篇
  国内免费   374篇
测绘学   1233篇
大气科学   2487篇
地球物理   6360篇
地质学   11555篇
海洋学   2540篇
天文学   7706篇
综合类   146篇
自然地理   1461篇
  2021年   286篇
  2020年   283篇
  2019年   326篇
  2018年   827篇
  2017年   783篇
  2016年   1031篇
  2015年   595篇
  2014年   974篇
  2013年   1711篇
  2012年   1056篇
  2011年   1297篇
  2010年   1087篇
  2009年   1415篇
  2008年   1232篇
  2007年   1182篇
  2006年   1208篇
  2005年   995篇
  2004年   884篇
  2003年   879篇
  2002年   875篇
  2001年   788篇
  2000年   749篇
  1999年   684篇
  1998年   627篇
  1997年   635篇
  1996年   575篇
  1995年   540篇
  1994年   514篇
  1993年   435篇
  1992年   390篇
  1991年   421篇
  1990年   415篇
  1989年   392篇
  1988年   363篇
  1987年   439篇
  1986年   365篇
  1985年   449篇
  1984年   486篇
  1983年   473篇
  1982年   451篇
  1981年   362篇
  1980年   366篇
  1979年   314篇
  1978年   310篇
  1977年   303篇
  1976年   264篇
  1975年   261篇
  1974年   288篇
  1973年   308篇
  1972年   205篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
771.
772.
A multimetric fish index, the Estuarine Fish Community Index (EFCI) of Harrison and Whitfield (2004), was applied to data collected for 190 South African estuaries. Estuaries spanned three biogeographic regions and included three distinct estuarine typologies. The EFCI is based on 14 metrics or measures that represent four broad fish community attributes: species diversity and composition, species abundance, nursery function, and trophic integrity. Metric reference conditions and scoring criteria were developed separately for each estuary type within each zoogeographic region. The final EFCI was applied to each estuary by comparing its fish community with the appropriate reference. Index values ranged between 18 (very poor) and 66 (very good). A comparison of the EFCI with independent measures of estuarine condition revealed that the index was able to effectively differentiate between poor and good quality sites. Applying the EFCI to estuaries in which multiple samples were taken also showed that the index is reproducible. The EFCI is both a robust and sensitive method for assessing the ecological condition of estuarine systems; it is also an effective communication tool for converting ecological information into an easily understood format for managers, policy makers, and the general public.  相似文献   
773.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   
774.
The effects of advection, dispersion, and biological processes on nitrogen and phytoplankton dynamics after a storm event in December 2002 are investigated in an estuary located on the northern New South Wales coast, Australia. Salinity observations for 16 d after the storm are used to estimate hydrodynamic transports for a one-dimensional box model. A biological model with nitrogen limited phytoplankton growth, mussel grazing, and a phytoplankton mortality term is forced by the calculated transports. The model captured important aspects of the temporal and spatial dynamics of the bloom. A quantitative analysis of hydrodynamic and biological processes shows that increased phytoplankton biomass due to elevated nitrogen loads after the storm was not primarily regulated by advection or dispersion in spite of an increase in river flow from <1 to 928×103 m3 d−1. Of the dissolved nitrogen that entered the surface layer of the estuary in the 16 d following the storm event, the model estimated that 28% was lost through exchange with the ocean or bottom layers, while 15% was removed by the grazing of just one mussel species,Xenostrobus securis, on phytoplankton, and 50% was lost through other biological phytoplankton loss processes.X. securis grazing remained an important loss process even when the estimated biological parameters in the model were varied by factors of ± 2. The intertidal mangrove pneumatophore habitat ofX. securis allows filtering of the upper water column from the lateral boundaries when the water column is vertically stratified, exerting top-down control on phytoplankton biomass.  相似文献   
775.
776.
777.
Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the causes of impairment. Classification simplifies these determinations, because estuaries within a class are more likely to respond similarly to particular stressors. We reviewed existing classification systems for their applicability to grouping coastal marine and Great Lakes water bodies based on their responses to aquatic stressors, including nutrients, toxic substances, suspended sediments, habitat alteration, and combinations of stressors. Classification research historically addressed terrestrial and freshwater habitats rather than coastal habitats. Few efforts focused on stressor response, although many well-researched classification frameworks provide information pertinent to stressor response. Early coastal classifications relied on physical and hydrological properties, including geomorphology, general circulation patterns, and salinity. More recent classifications sort ecosystems into a few broad types and may integrate physical and biological factors. Among current efforts are those designed for conservation of sensitive habitats based on ecological processes that support patterns of biological diversity. Physical factors, including freshwater inflow, residence time, and flushing rates, affect sensitivity to stressors. Biological factors, such as primary production, grazing rates, and mineral cycling, also need to be considered in classification. We evaluate each existing classification system with respect to objectives, defining factors, extent of spatial and temporal applicability, existing sources of data, and relevance to aquatic stressors. We also consider classification methods in a generic sense and discuss their strengths and weaknesses for our purposes. Although few existing classifications are based on responses to stressors, may well-researched paradigms provide important information for improving our capabilities for classification, as an investigative and predictive management tool.  相似文献   
778.
JANE K. HART 《Sedimentology》2006,53(1):125-146
The subglacial processes at Briksdalsbreen, Norway, are examined by a combination of sedimentology, thin section and scanning electron microscope (SEM) analysis of till samples from an exposed subglacial surface and from beneath the glacier. Studies of a fluted surface indicate that subglacial deformation is occurring on a field scale with flutes forming behind most clasts 0·6 m high. At the thin section scale (0·014–2·0 mm) it is seen that deformation is by rotation and attenuation and is dependent on till texture. At the SEM scale (0·1–0·4 mm) it is seen that erosion is controlled by abrasion and percussion which produces distinct grain ‘styles’ as part of an erosional continuum. Overall it is shown that rotation and attenuation is a dominant process at all scales and that the clast interactions associated with different scale perturbations within the shear zone control erosion and deposition, as well as landform and fabric production.  相似文献   
779.
At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east–west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ∼18 kbar at ∼850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ∼790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ∼4 kbar and ∼700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9–3.5 mm yr−1 and 7–9.4 °C Myr−1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid.  相似文献   
780.
The TRANSALP consortium, comprising institutions from Italy, Austria and Germany, carried out deep seismic reflection measurements in the Eastern Alps between Munich and Venice in 1998, 1999 and 2001. In order to complement each other in resolution and depth range, the Vibroseis technique was combined with simultaneous explosive source measurements. Additionally, passive cross-line recording provided three-dimensional control and alternative north–south sections. Profits were obtained by the combination of the three methods in sectors or depths where one method alone was less successful.The TRANSALP sections clearly image a thin-skinned wedge of tectonic nappes at the northern Alpine front zone, unexpected graben or half-graben structures within the European basement, and, thick-skinned back-thrusting in the southern frontal zone beneath the Dolomite Mountains. A bi-vergent structure at crustal scale is directed from the Alpine axis to the external parts. The Tauern Window obviously forms the hanging wall ramp anticline above a southward dipping, deep reaching reflection pattern interpreted as a tectonic ramp along which the Penninic units of the Tauern Window have been up-thrusted.The upper crystalline crust appears generally transparent. The lower crust in the European domain is characterized by a 6–7 km thick laminated structure. On the Adriatic side the lower crust displays a much thicker or twofold reflective pattern. The crustal root at about 55 km depth is shifted around 50 km to the south with respect to the main Alpine crest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号