首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   8篇
  国内免费   1篇
测绘学   4篇
大气科学   17篇
地球物理   62篇
地质学   84篇
海洋学   21篇
天文学   6篇
综合类   1篇
自然地理   31篇
  2023年   1篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   15篇
  2017年   6篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   18篇
  2012年   13篇
  2011年   20篇
  2010年   12篇
  2009年   7篇
  2008年   13篇
  2007年   7篇
  2006年   10篇
  2005年   6篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1975年   1篇
  1972年   1篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
21.
A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non‐linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
22.
Within a wave-exposed mangrove forest, novel field observations are presented, comparing millimeter-scale turbulent water velocity fluctuations with contemporaneous subtidal bed elevation changes. High-resolution velocity and bed level measurements were collected from the unvegetated mudflat, at the mangrove forest fringe, and within the forest interior over multiple tidal cycles (flood–ebb) during a 2-week period. Measurements demonstrated that the spatial variability in vegetation density is a control on sediment transport at sub-meter scales. Scour around single and dense clusters of pneumatophores was predicted by a standard hydraulic engineering equation for wave-induced scour around regular cylinders, when the cylinder diameter in the equations was replaced with the representative diameter of the dense pneumatophore clusters. Waves were dissipated as they propagated into the forest, but dissipation at infragravity periods (> 30 s) was observed to be less than dissipation at shorter periods (< 30 s), consistent with the predictions of a simple model. Cross-wavelet analysis revealed that infragravity-frequency fluctuations in the bed level were occasionally coherent with velocity, possibly indicating scour upstream of dense pneumatophore patches when infragravity waves reinforced tidal currents. Consequently, infragravity waves were a likely driver of sediment transport within the mangrove forest. Near-bed turbulent kinetic energy, estimated from the turbulent dissipation rate, was also correlated with bed level changes. Specifically, within the mangrove forest and over the unvegetated mudflat, high-energy events were associated with erosion or near-zero bed level change, whereas low-energy events were associated with accretion. In contrast, no single relationship between bed level changes and mean current velocity was applicable across both vegetated and unvegetated regions. These observations support the theory that sediment mobilization scales with turbulent energy, rather than mean velocity, a distinction that becomes important when vegetation controls the development of turbulence.  相似文献   
23.
24.
25.
Intertidal zones by definition are exposed to air at low tide, and the exposure duration can be weeks (e.g. during neap tides) depending on water level and bed elevation. Here we investigated the effect of varying exposure duration (6 h to 10 days) on intertidal mudflat erosion (measured using the EROMES device), where the effects of water content and biofilm biomass (using chlorophyll-a content as a proxy, Chl-a μg g−1) were taken into account. Sediments were collected between spring and summer (in October 2018, January 2019 and February 2019) from an intertidal site in the Firth of Thames, New Zealand. Longer exposure duration resulted in more stable sediments [higher erosion threshold (Ƭcr, N m−2) and lower erosion rate (ER, g m−2 s−1)]. After 10 days, exposure increased Ƭcr by 1.7 to 4.4 times and decreased ER by 11.6 to 21.5 times compared with 6 h of exposure. Chl-a and water content changed with exposure duration and were significantly correlated with changes in Ƭcr and ER. The stability of sediments after two re-submersion periods following exposure was also examined and showed that the stabilizing effect of exposure persisted even though water content had increased to non-exposure levels. Re-submersion was associated with an increase in Chl-a content, which likely counteracted the destabilizing influence of increased water content. A site-specific model, which included the interplay between evaporation and biofilm biomass, was developed to predict water content as a function of exposure duration. The modelled water content (WMod.) explained 98% of the observed variation in water content (WObs.). These results highlight how the exposure period can cause subtle changes to erosion regimes of sediments. An understanding of these effects (e.g. in sediment transport modelling) is critical to predicting the resilience of intertidal zones into the future, when sea-level rise is believed to exacerbate erosion in low-lying areas. © 2020 John Wiley & Sons, Ltd.  相似文献   
26.
Rapid water level rise due to climate change has the potential to remobilize loose sediments along shorelines and increase the turbidity of nearshore waters, thereby impacting water quality and aquatic ecosystem health. Siling Lake is one of the largest and most rapidly expanding lakes on the Tibetan Plateau. Between 2000 and 2017, this lake experienced an increase in water level of about 8 m and a doubling in water turbidity. Here, using this lake as a study site, we used a wave model and high-resolution remote sensing of turbidity (Landsat-8) to assess the potential connection between water-level rise, enhanced wind-driven sediment resuspension and water turbidity. Our analysis revealed that strong bottom shear stresses triggered by wind-generated waves over newly flooded areas were related to an increase in water turbidity. The spatial variability of Siling Lake turbidity showed a strong dependence on local wind characteristics and fetch. Two factors combined to drive the increase in turbidity: (1) high wave energy leading to high bottom shear stresses, and (2) flooding of unvegetated shallow areas. Using a new relationship between wave energy and turbidity developed here, we expect the increase in turbidity of Siling Lake to taper off in the near future due to the steep landscape surrounding the lake that will prevent further flooding. Our results imply that rising water levels along the coast are not only expected to influence terrestrial ecosystems but could also change water quality. The methodology presented herein could be applied to other shorelines affected by a rapid increase in water level. © 2020 John Wiley & Sons, Ltd.  相似文献   
27.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
28.
In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents. Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump. Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2.  相似文献   
29.
The paraglacial sequence in the Leh valley, Ladakh Himalaya preserves imprints of various processes active during deglaciation in the late phase of Last Glacial. In present work, a high resolution sedimentological record generated for Spituk is presented identifying aeolian episodes, mudflow events from Ladakh Range and debris flows extending from Zanskar Range across present Indus River. Two temporal phases of water ponding within Spituk Sequence are also identified. The seismites recorded at various stratigraphic depths and their association with the sediment facies signifies gravity induced process besides possible seismic activity as an added phenomena. Linkage between paraglacial processes since Last Glacial to Recent is tracked and evaluated.  相似文献   
30.
Tides are often considered to be the dominant hydrodynamic process within mesotidal estuaries although waves can also have a large influence on intertidal erosion rates. Here, we use a combination of hydrodynamic measurements and sediment deposition records to determine the conditions under which observed waves are ‘morphologically significant’, in which case they influence tidal and suspended sediment flux asymmetry and subsequently infilling over geomorphological timescales. Morphological significant conditions were evaluated using data from contrasting arms in a dendritic mesotidal estuary, in which the orientation of the arms relative to the prevailing wind results in a marked difference in wave conditions, deposition rates and morphology. By defining the morphological significance of waves as a product of the magnitude of bed shear stress and frequency of occurrence, even small (but frequently occurring) winds are shown to be capable of generating waves that are morphologically significant given sufficient fetch. In the arm in which fetch length is restricted, only stronger but rare storm events can influence sediment flux and therefore tides are more morphologically significant over longer timescales. Water depth within this mesotidal estuary is shown to be a critical parameter in controlling morphological significance; the rapid attenuation of short period waves with depth results in contrasting patterns of erosion occurring during neaps and accretion during springs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号