Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit. 相似文献
An AMS radiocarbon-dated pollen record from a peat deposit on Mitkof Island, southeastern Alaska provides a vegetation history spanning ∼12,900 cal yr BP to the present. Late Wisconsin glaciers covered the entire island; deglaciation occurred > 15,400 cal yr BP. The earliest known vegetation to develop on the island (∼12,900 cal yr BP) was pine woodland (Pinus contorta) with alder (Alnus), sedges (Cyperaceae) and ferns (Polypodiaceae type). By ∼12,240 cal yr BP, Sitka spruce (Picea sitchensis) began to colonize the island while pine woodland declined. By ∼11,200 cal yr BP, mountain hemlock (Tsuga mertensiana) began to spread across the island. Sitka spruce-mountain hemlock forests dominated the lowland landscapes of the island until ∼10,180 cal yr BP, when western hemlock (Tsuga heterophylla) began to colonize, and soon became the dominant tree species. Rising percentages of pine, sedge, and sphagnum after ∼7100 cal yr BP may reflect an expansion of peat bog habitats as regional climate began to shift to cooler, wetter conditions. A decline in alders at that time suggests that coastal forests had spread into the island's uplands, replacing large areas of alder thickets. Cedars (Chamaecyparis nootkatensis, Thuja plicata) appeared on Mitkof Island during the late Holocene. 相似文献
Abstract— Carbon isotopic compositions were measured for shock‐produced diamond and shocked graphite formed at peak pressures ranging from 37 to 52 GPa. The δ13C values of diamonds produced in a sealed container were generally lower than that of the initial graphite. The differences in the carbon isotopic composition between initial graphite and shocked graphite/diamond may reflect kinetic isotopic fractionation during the oxidation of the graphite/diamond and/or analytical artifacts possibly induced by impurities in the samples. The pressure effect on the isotopic fractionations between graphite and diamond can be estimated from the δ13C values of impurity‐free diamonds produced using a vented container from which gases, including oxygen, in pore spaces escaped during or after the diamond formation (e.g., 0.039 ± 0.085‰ at a peak pressure of 52 GPa). Any isotopic fractionation induced by shock conversion of graphite to diamond is too small to be detected in natural shock‐induced diamond‐graphite systems related to terrestrial impact cratering processes. 相似文献
Jordan suffers from water scarcity and groundwater covers the majority of Jordan’s water supply. Therefore, there is an urgent need to manage this resource conscientiously. A regional numerical groundwater flow model, developed as part of a decision support system for the country of Jordan, allows for quantification of the overexploitation of groundwater resources and enables determination of the extent of unrecorded agricultural groundwater abstraction. Groundwater in Jordan is abstracted from three main aquifers partly separated by aquitards. With updated geological, structural, and hydrogeological data available in the country, a regional numerical groundwater flow model for the whole of Jordan and the southernmost part of Syria was developed using MODFLOW. It was first calibrated for a steady-state condition using data from the 1960s, when groundwater abstraction was negligible. After transient calibration using groundwater level measurements from all aquifers, model results reproduce the large groundwater-level declines experienced in the last decades, which have led to the drying out of numerous springs. They show a reversal of groundwater flow directions in some regions, due to over-abstraction, and demonstrate that documented abstractions are not sufficient to cause the observed groundwater-level decline. Only after considering irrigation water demand derived from remote sensing data, the model is able to simulate these declines. Illegal abstractions can be quantified and predictive scenarios show the potential impact of different management strategies on future groundwater resources.
The sedimentological and geochemical properties of a 7·47 m long laminated sequence from hypersaline Lake Yoa in northern Chad have been investigated, representing a unique, continuous 6100 year long continental record of climate and environmental change in the eastern Central Sahara. These data were used to reconstruct the Mid to Late Holocene history of this currently hyper‐arid region, in order to address the question of whether the Mid Holocene environmental transition from a humid to a dry Sahara was progressive or abrupt. This study involved a suite of analyses, including petrographic and scanning electron microscope examination of thin sections, X‐ray diffraction, X‐radiography, granulometry, loss on ignition and magnetic susceptibility. The potential of micro‐X‐ray fluorescence core scanning was tested at very high resolution. Detailed microscopic investigation revealed the sedimentary processes responsible for the formation of the fine laminations, identified the season during which they were formed, and confirmed their annually rhythmic nature. High‐resolution X‐ray fluorescence core scanning allowed the distinction of each individual lamination over the entire record, opening new perspectives for the study of finely laminated sediment sequences. Geochemical and mineralogical data reveal that, due to decreasing monsoon rainfall combined with continuous and strong evaporation, the hydrologically open and fresh Mid Holocene Lake Yoa slowly evolved into the present‐day hypersaline brine depleted in calcium, which has existed for about the past 1050 years. During the oldest part of the investigated period, Lake Yoa probably contained a permanently stratified lower water column that was nevertheless disrupted relatively frequently by mixing events. Deep‐water anoxia became more stable because of increased salinity‐driven density stratification. In parallel, the sediment grain‐size proxies record a progressive increase of aeolian input in the course of the last 6100 years. Altogether, all geochemical and sedimentological indicators point to a progressive drying of the eastern Central Sahara, strengthening previous conclusions based on palaeoecological indicators. 相似文献