首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   24篇
  国内免费   1篇
测绘学   15篇
大气科学   57篇
地球物理   146篇
地质学   234篇
海洋学   65篇
天文学   66篇
综合类   1篇
自然地理   71篇
  2024年   2篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   20篇
  2018年   19篇
  2017年   18篇
  2016年   23篇
  2015年   21篇
  2014年   35篇
  2013年   52篇
  2012年   40篇
  2011年   37篇
  2010年   41篇
  2009年   28篇
  2008年   34篇
  2007年   29篇
  2006年   32篇
  2005年   28篇
  2004年   18篇
  2003年   17篇
  2002年   20篇
  2001年   10篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   9篇
  1996年   5篇
  1995年   9篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1986年   1篇
  1985年   9篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1934年   1篇
排序方式: 共有655条查询结果,搜索用时 15 毫秒
541.
An analytic element approach is presented for the modeling of steady groundwater flow through multi-aquifer systems with piecewise constant aquifer and leaky layer properties. Different properties may be specified for domains bounded by closed polygons, referred to as polygonal inhomogeneities. The boundary of these inhomogeneities is modeled with two types of high-order line elements. First, a string of single-aquifer line-doublets is used; these elements cut through all aquifers and are valid both inside and outside the inhomogeneity. Second, two strings of multi-aquifer line-sinks are used, one string that is valid inside the inhomogeneity and one string that is valid outside; the comprehensive extraction of these line-sinks is zero at any point along the string. The proposed approach results in a comprehensive flow field of which the component normal to the boundary of the inhomogeneity is continuous across the boundary at any point. Within each individual aquifer, continuity of head and the component of flow normal to the boundary are met approximately across the boundary; the accuracy increases when the order of the line elements is increased and/or when shorter line elements are used. The proposed analytic element approach produces results that are virtually identical to the exact solution for a cylindrical inhomogeneity, and a high-resolution MODFLOW2000 model of two rectangular inhomogeneities with a shared boundary. The practical application of the approach is demonstrated through the solution of a problem with an irregularly shaped inhomogeneity with rivers crossing the inhomogeneity boundary.  相似文献   
542.
Time series analysis is a data-driven approach to analyze time series of heads measured in an observation well. Time series models are commonly much simpler and give much better fits than regular groundwater models. Time series analysis with response functions gives insight into why heads vary, while such insight is difficult to gain with black box models out of the artificial intelligence world. An important application is to quantify the contributions to the head variation of different stresses on the aquifer, such as rainfall and evaporation, pumping, and surface water levels. Time series analysis may be applied to answer many groundwater questions without the need for a regular groundwater model, such as what is the drawdown caused by a pumping station? Or, how long will it take before groundwater levels recover after a period of drought? Even when a regular groundwater model is needed to solve a groundwater problem, time series analysis can be of great value. It can be used to clean up the data, identify the major stresses on the aquifer, determine the most important processes that affect flow in the aquifer, and give an indication of the fit that can be expected. In addition, it can be used to determine calibration targets for steady-state models, and it can provide several alternative calibration methods for transient models. In summary, the overarching message of this paper is that it would be wise to do time series analysis for any application that uses measured groundwater heads.  相似文献   
543.
West Falmouth Harbor, a shallow lagoon on Cape Cod, has experienced a threefold increase in nitrogen load since the mid- to late 1990s due to input from a groundwater plume contaminated by a municipal wastewater treatment plant. We measured the exchange of nitrogen and phosphorus between the harbor and the coastal waters of Buzzards Bay over several years when the harbor was experiencing this elevated nitrogen load. During summer months, the harbor not only retained the entire watershed nitrogen load but also had a net import of nitrogen from Buzzards Bay. During the spring and fall, the harbor had a net export of nitrogen to Buzzards Bay. We did not measure the export in winter, but assuming the winter net export was less than 112 % of the load, the harbor exported less than half of the watershed nitrogen load on an annual basis. For phosphorus, the harbor had a net import from coastal waters in the spring and summer months and a net export in the fall. Despite the large increase in nitrogen load to the harbor, the summertime import of phosphorus from Buzzards Bay was sufficient to maintain nitrogen limitation of primary productivity during the summer. Our findings illustrate that shallow systems dominated by benthic producers have the potential to retain large terrestrial nitrogen loads when there is sufficient supply of phosphorus from exchange with coastal waters.  相似文献   
544.
The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in the upper estuary since the early 1990s, but have worsened in the lower estuary. The overall system-wide eutrophication impact is high, despite a decrease in nitrogen loads from the upper basin and declining surface water nitrate nitrogen concentrations over that period; (3) eutrophic conditions in the Potomac River Estuary are representative of Chesapeake Bay region and other US estuaries; moderate to high levels of nutrient-related degradation occur in about 65 % of US estuaries, particularly river-dominated low-flow systems such as the Potomac River Estuary; and (4) shellfish (oyster) aquaculture could remove eutrophication impacts directly from the estuary through harvest but should be considered a complement—not a substitute—for land-based measures. The total nitrogen load could be removed if 40 % of the Potomac River Estuary bottom was in shellfish cultivation; a combination of aquaculture and restoration of oyster reefs may provide larger benefits.  相似文献   
545.
546.
We assess the future of coal under alternative climate stabilization regimes, investigating how the quantity and location of future coal production, trade and use depends upon five factors: the supply-side constraint of resource depletion, diversification and deepening of international trade, economic growth, trends in energy intensity, and the availability of coal-fired carbon-free electric generation technology (IGCC-CCS). Using the Phoenix computable general equilibrium model of the world economy, we find that coal is sensitive to demand-side assumptions about economic growth and energy-saving structural or technological change. In a 550 ppm stabilization emission tax scenario, the gobal coal industry initially declines sharply and then rebounds, in 2050 reaching roughly the same size as it is today—but only if IGCC-CCS is available by 2020. Under alternative stabilization regimes, IGCC-CCS penetration is a key influence on production and imports in major coal regions, where it interacts with extraction costs driven by the rate of depletion relative to trade partners.  相似文献   
547.
548.
Effectively managing and reducing high suspended sediment loads in rivers requires an understanding of the magnitude of major sediment sources as well as erosion and transport processes that deliver excess fine sediments to the channel network. The focus of this research is to determine the magnitude of erosion from tall bluffs, a primary sediment source in the 2880 km2 Le Sueur watershed, Minnesota, USA. We coupled analyses of seven decades of aerial photographs with four years of repeat terrestrial laser scanning (TLS) to determine erosion rates on bluffs. Together, these datasets provide decadal‐scale retreat rates throughout the entire watershed and high‐resolution geomorphic change detection on a subset of bluffs to both constrain erosion rates and document how environmental conditions affect bluff retreat. Erosion rates from aerial photographs and TLS were extrapolated from 243 and 15 measured bluffs, respectively, to all 480 bluffs in the Le Sueur watershed using multiple techniques to obtain estimates of sediment loading from these features at the watershed‐scale. Despite different spatial and temporal measurement scales, the aerial photograph and TLS estimates yielded similar results for bluff retreat rate and total mass of sediment derived from bluffs, with bluffs in the Le Sueur watershed yielding 135 000 ± 39 000 Mg/yr of fine sediment. Comparing this value to the average annual total suspended solids (TSS) load determined from gauging from 2000 to 2010, we determined that bluffs comprise 57 ± 16% of the total TSS load, making bluffs the single most abundant fine sediment source in the basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
549.
Steady interface flow in heterogeneous aquifer systems is simulated with single‐density groundwater codes by using transformed values for the hydraulic conductivity and thickness of the aquifers and aquitards. For example, unconfined interface flow may be simulated with a transformed model by setting the base of the aquifer to sea level and by multiplying the hydraulic conductivity with 41 (for sea water density of 1025 kg/m3). Similar transformations are derived for unconfined interface flow with a finite aquifer base and for confined multi‐aquifer interface flow. The head and flow distribution are identical in the transformed and original model domains. The location of the interface is obtained through application of the Ghyben‐Herzberg formula. The transformed problem may be solved with a single‐density code that is able to simulate unconfined flow where the saturated thickness is a linear function of the head and, depending on the boundary conditions, the code needs to be able to simulate dry cells where the saturated thickness is zero. For multi‐aquifer interface flow, an additional requirement is that the code must be able to handle vertical leakage in situations where flow in an aquifer is unconfined while there is also flow in the aquifer directly above it. Specific examples and limitations are discussed for the application of the approach with MODFLOW. Comparisons between exact interface flow solutions and MODFLOW solutions of the transformed model domain show good agreement. The presented approach is an efficient alternative to running transient sea water intrusion models until steady state is reached.  相似文献   
550.
The ~4-ka trachytic Rungwe Pumice (RP) deposit from Rungwe Volcano in South-Western Tanzania is the first Plinian-style deposit from an African volcano to be closely documented focusing on its physical characterization. The RP is a mostly massive fall deposit with an inversely graded base. Empirical models suggest a maximum eruption column height H T of 30.5–35 km with an associated peak mass discharge rate of 2.8–4.8 × 108 kg/s. Analytical calculations result in H T values of 33 ± 4 km (inversion of TEPHRA2 model on grain size data) corresponding to mass discharge ranging from 2.3 to 6.0 × 108 kg/s. Lake-core data allow extrapolation of the deposit thinning trend far beyond onland exposures. Empirical fitting of thickness data yields volume estimates between 3.2 and 5.8 km3 (corresponding to an erupted mass of 1.1–2.0 × 1012 kg), whereas analytical derivation yields an erupted mass of 1.1 × 1012 kg (inversion of TEPHRA2 model). Modelling and dispersal maps are consistent with nearly no-wind conditions during the eruption. The plume corner is estimated to have been ca. 11–12 km from the vent. After an opening phase with gradually increasing intensity, a high discharge rate was maintained throughout the eruption, without fountain collapse as is evidenced by a lack of pyroclastic density current deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号