首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   15篇
  国内免费   3篇
测绘学   6篇
大气科学   9篇
地球物理   207篇
地质学   146篇
海洋学   4篇
天文学   26篇
自然地理   8篇
  2021年   6篇
  2018年   6篇
  2017年   13篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   16篇
  2012年   13篇
  2011年   17篇
  2010年   7篇
  2009年   14篇
  2008年   12篇
  2006年   5篇
  2005年   9篇
  2004年   6篇
  2002年   6篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   9篇
  1996年   8篇
  1995年   6篇
  1992年   4篇
  1991年   5篇
  1988年   6篇
  1986年   11篇
  1985年   7篇
  1984年   8篇
  1983年   4篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   6篇
  1973年   7篇
  1972年   3篇
  1971年   6篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
  1966年   5篇
  1964年   4篇
  1963年   3篇
  1962年   7篇
  1960年   5篇
  1935年   3篇
  1931年   3篇
排序方式: 共有406条查询结果,搜索用时 31 毫秒
401.
402.
403.
Modern fluvial deposits from both small and large rivers were studied at 14 monitoring sites over 2 years (4 successive sampling seasons) in the area of eastern Moravia (Czech Republic). Grain size, geochemistry, content of persistent organic pollutants (PAHs, PCBs, HCHs, DDTs, HCBs and PeCB) and TOC were examined with the aim to understand their mutual relations and seasonal variations in sediment character and pollutant content. Sand and silt fraction predominate and the clay content is relatively low. Differences in provenance for various river systems were recognised. Both regional and seasonal variations in terms of content of persistent organic pollutants were documented. The content of TOC and mud was shown to play an important role in the accumulation of chlorinated persistent organic pollutants PCBs, HCHs, DDTs and HCB.  相似文献   
404.
The strongly peraluminous and P-rich, protolithionite and zinnwaldite leucogranites from Podlesí, western Krušné Hory Mts., Czech Republic, contain accessory zircon with extraordinary enrichment of several elements, which constitute trace elements in common zircon. Elements showing a not yet reported anomalous enrichment include P (up to 20.2 wt.% P2O5; equivalent to 0.60 apfu, formula calculated on the basis of 4 oxygen atoms), Bi (up to 9.0 wt.% Bi2O3; 0.086 apfu), Nb (up to 6.7 wt.% Nb2O5, 0.12 apfu), Sc (up to 3.45 wt.% Sc2O3; 0.10 apfu), U (up to 14.8 wt.% UO2; 0.12 apfu) and F (up to 3.81 wt.% F; 0.42 apfu). Strong enrichment of P preferentially involved the berlinite-type substitution (2 Si4+  P5+ + Al3+) implying that significant Al may enter the Si position in zircon. Incorporation of other exotic elements is primarily governed by the xenotime (Si4+ + Zr4+  P5+ + Y3+), pretulite (Sc3+ + P5+  Zr4+ + Si4+), brabantite-type (Ca2+ + (U, Th)4+ + 2P5+  2Zr4+ + 2Si4+), and ximengite-type (Bi3+ + P5+  Zr4+ + Si4+) substitution reactions. One part of the anomalous zircons formed late-magmatically, from a strongly peraluminous, P–F–U-rich hydrous residual melt that gave rise to the zinnwaldite granite. Interaction with aggressive residual fluids and metamictization have further aided in element enrichment or depletion, particularly in altered parts of zircon contained in the protolithionite granite. Most of the zircon from F-rich greisens have a composition close to endmember ZrSiO4 and are chemically distinct from zircon in its granite parent. This discrepancy implies that at Podlesí, granitic zircon became unstable and completely dissolved during greisenization. Part of the mobilized elements was reprecipitated in newly grown, hydrothermal zircon.  相似文献   
405.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
406.
High-pressure (HP) granulites form either in the domain of the subducted plate during continental collision or in supra-subduction systems where the thermally softened upper plate is shortened and thickened. Such a discrepancy in tectonic setting can be evaluated by metamorphic pressure–temperature–time-deformation (P–T–t–D) paths. In the current study, P–T–t–D paths of Early Palaeozoic HP granulite facies rocks, in the form of metabasic lenses enclosed in migmatitic metapelite, from the Dunhuang block, NW China, are investigated in order to constrain the nature of the HP rocks and shed light on the geodynamic evolution of a modern hot orogenic system in an active margin setting. The rocks show a polyphase evolution characterized by (1) relics of horizontal or gently dipping fabric (S1) preserved in cores of granulite lenses and in garnet porphyroblasts, (2) a N-S trending sub-vertical fabric (S2) preserved in low-strain domains and (3) upright folds (F3) associated with a ubiquitous steep E-W striking axial planar foliation (S3). Garnet in the granulites preserves relics of a prograde mineral assemblage M1a equilibrated at ~11.5 kbar and ~770–780°C, whereas the matrix granulite assemblage (M1b) from the S1 fabric attained peak pressure at ~13.5 kbar and ~850°C. The granulites were overprinted at ~8–11 kbar and ~850–900°C during crustal melting (M2) followed by partial re-equilibration (M3) at ~8 kbar and ~625°C. A garnet Lu–Hf age of 421.6 ± 1.2 Ma dates metamorphism M1, while a garnet Sm–Nd age of 385.3 ± 4.0 Ma reflects M3 cooling of the granulites. The mineral assemblage, M1, of the host migmatitic metapelite formed at ~9–12.5 kbar and ~760–810°C, partial melting and migmatization (M2) occurred at ~7 kbar and ~760°C and re-equilibration (M3) at ~5–6 kbar and ~675°C. A garnet Lu–Hf age of 409.7 ± 2.3 Ma dates thermal climax (M2) and a garnet Sm–Nd age of 356 ± 11 Ma constrains M3 for the migmatitic metapelites. The timing of this late phase is also bracketed by an emplacement age of syntectonic granite dated at c. 360 Ma. Decoupling of M1 and M2 P–T evolutions between the mafic granulites and migmatitic metapelites indicates their different positions in the crustal column, while the shared pressure–temperature (P–T) evolution M3 suggests formation of a mélange-like association during the late stages of orogeny. The high-pressure event D1-M1 is interpreted as a result of Late Silurian–Early Devonian moderate crustal thickening of a thermally softened and thinned pre-orogenic crust. The high-temperature (HT) re-equilibration D2-M2 is interpreted as a result of Mid-Devonian shortening of the previously thickened crust, possibly due to ‘Andean-type’ underthrusting. The D3-M3 event reflects Late Devonian supra-subduction shortening and continuous erosion of the sub-crustal lithosphere. This tectono-metamorphic sequence of events is explained by polyphased Andean-type deformation of a ‘Cascadia-type’ active margin, which corresponds to a supra-subduction tectonic switching paradigm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号