首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24459篇
  免费   172篇
  国内免费   917篇
测绘学   1410篇
大气科学   1980篇
地球物理   4512篇
地质学   11602篇
海洋学   1026篇
天文学   1637篇
综合类   2161篇
自然地理   1220篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4761篇
  2017年   4040篇
  2016年   2577篇
  2015年   234篇
  2014年   83篇
  2013年   32篇
  2012年   990篇
  2011年   2728篇
  2010年   2017篇
  2009年   2311篇
  2008年   1889篇
  2007年   2362篇
  2006年   54篇
  2005年   197篇
  2004年   408篇
  2003年   412篇
  2002年   250篇
  2001年   49篇
  2000年   53篇
  1999年   14篇
  1998年   21篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   21篇
  1980年   20篇
  1978年   1篇
  1976年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
In east Asia, acidic gases derived from fossil fuel combustion have increased in the past decades. On the other hand, the Asian dust, also called Kosa (yellow sand) is transported following windstorms from arid lands in the Asian continent. Many researchers have been interested in the reaction between acidic aerosols and Kosa aerosols as well as the long-range transport of these emissions. To investigate the characteristics of chemical components in precipitation on a long-term basis over Japan, precipitation was sequentially collected from April 1984 to March 1997 at Kanazawa located near the coast of the Sea of Japan. Precipitation samples were collected at 1 mm intervals for the first 5 mm rainfall and all volume of rainwater after 6 mm for all precipitation events with an automatic wet only precipitation collector. According to the analyses of precipitation including Kosa aerosols during Kosa periods, the reaction in the air between Kosa and acidic components during the long-range transport was discussed.  相似文献   
262.
The fragile ecological environment of the Gurbantunggut Desert is damaged/disturbed by human activities relating to the development of oil-gas resources and the constructions of desert road and great engineering in the Jungger Basin. It was mainly represented: soil compaction, vegetation cleaning, burial of vegetation, oil polluting, and soil disturbance. With investigation and experiment, we found that when the way and intensity of engineering activities disturbing the eco-environment does not make its ecological stability disintegrated, the desert vegetation has a capacity of natural recovery. To speed and strengthen the process of vegetation recovery efficient assistant measurements, including stabilizing mobile sands promptly and sowing seeds of shrub and herb plants in good time will be needed.  相似文献   
263.
Episodic dune formations during the Quaternary are found in many deserts of China. The causes of desert expansions on different time scales are not the same. Desert extension at about 1.1 and 0.9 Ma ago were the response to the active tectonic movements, whereas the desert evolutions on the ten-thousand years time scale were the response to the orbital scale climatic changes. Spatial scale studies on desert evolution indicate that desert margins shifted greatly during the last glacial maximum (LGM) and the Holocene optimum, its changing from 125°E of the LGM to 105°E of the climatic optimum. Historical desertification in the semiarid China is not a response to climate drought but largely associated with the human impacts (mainly over-cultivation) since about 2300 years ago, which leads to the reworking of the underlying LGM sands.  相似文献   
264.
Because of the human exploitation and utilization of water resources in the Tarim Basin, the water resources consumption has changed from mainly natural ecosystem to artificial oasis ecosystem, and the environment has changed correspondingly. The basic changes are: desertification and oasis development coexist, both “the human being advance and the desert retreat” and “the desert advance and the human being retreat” coexist, but the latter is dominant. In the upper reaches, water volume drawing to irrigated agricultural areas has increased, artificial oases have been enlarging and moving from the deltas in the lower reaches of many rivers to the piedmont plains. In the middle and lower reaches of the Tarim River, the stream flow has decreased, old oases have declined, natural vegetations have been degenerating, desertification has been enlarging, and the environment has deteriorated. The transition regions, which consist of forestlands, grasslands and waters between the desert and the oases, have been decreasing continuously, their shelter function to the oases has been weakened, and the desert is threatening the oases seriously.  相似文献   
265.
The paper describes Western Australian examples and causes of land degradation. It outlines shortcomings in the methodologies used to rehabilitate these areas. From this a protocol is suggested for an ‘holistic’ approach to land rehabilitation.  相似文献   
266.
267.
268.
The groundwater table has been declining at a rate of 0.65 m/yr in Luancheng County since large scale groundwater extraction carried out in the 1960s. The drop of precipitation, substantial increase in agricultural output, variations of crop planting structure and construction of water conservancy projects in the headwater area all tie up with the decline of the groundwater table. On the basis of analyzing the hydrogeological conditions and the water resources utilization of Luancheng County, a three-dimensional groundwater flow model was developed to simulate the county’s groundwater flow through finite-difference method using Visual Modflow software. We divide the research field into four parts after analyzing the hydrogeological condition. Based on parameter calibration and adjustment using measured data, the hydraulic conductivity and specific yield were simulated. Using the calibrated model, we analyze the agricultural water saving potentiality and its influence on the groundwater. The results are as follows: (1) if we decrease the amount of water extracted by 0.14xl08 m3, the average groundwater table of the five observation wells in December will rise by 0.33 m; (2) if we decrease the water by 0.29x 108m3, the average groundwater table of the five observation wells in December will rise by 0.64 m; and (3) if we increase the water by 0.29 x 108m3, the average groundwater table of the five observation wells in December will decline by 0.45 m. So we can draw a conclusion that controlling the agricultural water use is an important way to prevent the decline of groundwater table.  相似文献   
269.
Soil sediment samples of 10 layers with a spacing of 10 cm each were collected in different floodplain zones adjacent to Huolin River in the Xianghai Nature Reserve, and contents of total N, total P and organic matters were analyzed. The results showed that contents of total N, total P and organic matters were generally decreasing with the increase of distance from sample locations to the river channel, and contents of the three items were generally higher in the upper soil layer than that in the lower soil layer. The content variations displayed how flooding functions influenced nutrient matter content variations in floodplain soils since the flood inundation frequencies of the sample locations varied. The correlation analysis displayed that there were remarkable relativities between total N, total P and organic matters within definite spatial distance from the Huolin River channel.  相似文献   
270.
Multi-parameter studies (stable isotopes in carbonate and organic matter, pigment,organic carbon and nitrogen contents) from a 660-yr continuous sediment core from Lake Cheng-hai, a closed, eutropic lake in southern China, provide information on lake historical eutrophi-cation. During the last 660 years, great changes have taken place in productivity and eutrophi-cation of Lake Chenghai in response to human activities. In 1690, the productivity of the lakebegan to increase as Lake Chenghai became closed from agriculture in the lake‘‘ s watershed. In 1942, Lake Chenghai evolved to eutrophic state, marked by an increase in organic carbon, ni-trogen, CaC03, pigment contents and obvious negative values of stable isotopes, which is more or less simultaneous with the large-scale population immigration during the period. In 1984, in-tensive human activities induced modern lacustrine productivity and eutrophic level. Human-in-duced trophic changes during the past few decades have affected the Lake Chenghai ecosystem tosuch an extent that it has never experienced before in the last 660 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号