首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   20篇
地质学   60篇
海洋学   2篇
天文学   56篇
自然地理   2篇
  2024年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   8篇
  2016年   10篇
  2015年   3篇
  2014年   2篇
  2013年   13篇
  2012年   10篇
  2011年   11篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
81.

A study of thirteen geothermal springs located in the geothermal field of Guelma, northeastern Algeria, was conducted. Samples were collected during the period between January 2014 and February 2016. Geochemical processes responsible for the chemical composition of thermal and mineralized water were evaluated. The hydrochemical analysis shows that the thermal waters are characterized by the presence of two different chemical facies, the first type SO4–Ca in the east, west and south of Guelma, the second type HCO3–Ca in the south. This analysis also attributed to sodium, chlorides, and sulfates to an evaporitic terrigenous origin by the molar ratio Sr2+/Ca2+. The thermal spring waters from Guelma geothermal system have a meteoric origin, and all samples are immature with strong mixing between hot and shallow waters with 19–38.5% rate of mixing. The silica geothermometer shows that these thermal waters have a temperature varying from 84 to 122 °C and that the water came from a depth of 2100–3000 m through a fault system that limits the pull-apart basin of Guelma. Potential environmental effluent from thermal spas could pollute in both the irrigation and drinking waters, and which imposes danger on the health of the inhabitants of the region.

  相似文献   
82.
We construct a U-N secular canonical planetary theory of the third order with respect to planetary masses. The Hori-Lie procedure is adopted to solve the problem. Expansions have been carried out by hand, neglecting powers higher than the second with respect to the eccentricity-inclination. We take into account the principal as well as the indirect part of the planetary disturbing function. The theory is expressed in terms of the Poincaré canonical variables, referring to the Jacobi-Radau set of origins. We assume that the 1:2 U-N critical terms and its multiples are the only periodic terms.  相似文献   
83.
We generalize our results of a second order Jupiter-Saturn planetary theory to be applicable for the case of the four major planets.We use the Von Zeipel method and we neglect powers higher than the third with respect to the eccentricities and sines of the inclinations in our expansions. We consider the critical terms as the only periodic terms.  相似文献   
84.
The earliest gravity measurements in Egypt were carried out by the Anglo-Egyptian Oil Company using Holweck-Lejay pendulum in the period 1937–1940.The measurement comprised few stations (about 41) in restricted areas along both the Western and Eastern coasts of the Gulf of Suez.During the period 1950–1951 Prof. G. Woolard made 21 gravimetric measurements in Egypt as a part of the world-wide gravity base net. Thi was refeered to Potsdam absolute value which was considered as the World Gravity Datum.In 1974, a new world-wide gravity net was published (I.G.S.N.71) which introduced a new concept for the world gravity reference datum, and consequently has replaced the Potsdam System. Since then, it was recommended that a national gravimetric network of base stations in Egypt on the basis of the I.G.S.N.-71 be established within the frame of establishing a gravity map of Egypt.In the period from January 1975, The General Petroleum Company carried out 624 gravity observations throughout the country. These measurements have been combined with the I.G.S.N.-71 values to form 65 gravity base points which in turn from the N.G.S.B.N. (Fig. 1).  相似文献   
85.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   
86.
Statics are an effective approach to correct for complex velocity variations in the near surface, but so far, to a large extent, a general and robust automatic static correction method is still lacking. In this paper, we propose a novel two‐phase automatic static correction method, which is capable of handling both primary wave statics (PP statics) and converted‐wave statics (S‐wave statics). Our method is purely data driven, and it aims at maximizing stacking power in the target zone of the stack image. Low‐frequency components of the data are analysed first using an advanced genetic algorithm to estimate seed statics and the time structure for an event of interest, and then the original full‐band data are further aligned via the back‐and‐forth coordinate descent method using the seed statics as initial values and the time structure for event alignment guidance. We apply our new method to two field datasets, i.e., one for 2D PP static correction and the other for 3D S‐wave static correction.  相似文献   
87.
Floodplain red gum forests (Eucalyptus camaldulensis plus associated grasses, reeds and sedges) are sites of high biodiversity in otherwise arid regions of southeastern Australia. They depend on periodic floods from rivers, but dams and diversions have reduced flood frequencies and volumes, leading to deterioration of trees and associated biota. There is a need to determine their water requirements so environmental flows can be administered to maintain or restore the forests. Their water requirements include the frequency and extent of overbank flooding, which recharges the floodplain soils with water, as well as the actual amount of water consumed in evapotranspiration (ET). We estimated the flooding requirements and ET for a 38 134 ha area of red gum forest fed by the Murrumbidgee River in Yanga National Park, New South Wales. ET was estimated by three methods: sap flux sensors placed in individual trees; a remote sensing method based on the Enhanced Vegetation Index from MODIS satellite imagery and a water balance method based on differences between river flows into and out of the forest. The methods gave comparable estimates yet covered different spatial and temporal scales. We estimated flood frequency and volume requirements by comparing Normalized Difference Vegetation Index values from Landsat images with flood history from 1995 to 2014, which included both wet periods and dry periods. ET during wet years is about 50% of potential ET but is much less in dry years because of the trees' ability to control stomatal conductance. Based on our analyses plus other studies, red gum trees at this location require environmental flows of 2000 GL yr?1 every other year, with peak flows of 20 000 ML d?1, to produce flooding sufficient to keep them in good condition. However, only about 120–200 GL yr?1 of river water is consumed in ET, with the remainder flowing out of the forest where it enters the Murray River system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
88.
As in many other semi-arid regions, the Plio-quaternary aquifer of the eastern coast of Cap Bon peninsula (NE Tunisia) shows a parallel increase in overexploitation and mineralization of groundwater resources and so the water quality is deteriorating. Different methods using geochemistry (ions Na+, Cl, Ca2+, Mg2+, Br) and stable isotopes (18O, 2H) are compared with the hydrodynamic information for identifying the main processes involved in the increase of salinization. Along the coast, intrusion of seawater resulting from groundwater overexploitation is identified, but is not the only cause of qualitative degradation: the development of irrigation that induces soil leaching and transfer of fertilizers to groundwater over the whole aquifer extent is another major reason for the increase in salinization. A total of 48 groundwater wells were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies.  相似文献   
89.
Because groundwater recharge in dry regions is generally low, arid and semiarid environments have been considered well-suited for long-term isolation of hazardous materials (e.g., radioactive waste). In these dry regions, water lost (transpired) by plants and evaporated from the soil surface, collectively termed evapotranspiration (ET), is usually the primary discharge component in the water balance. Therefore, vegetation can potentially affect groundwater flow and contaminant transport at waste disposal sites. We studied vegetation health and ET dynamics at a Uranium Mill Tailings Radiation Control Act (UMTRCA) disposal site in Shiprock, New Mexico, where a floodplain alluvial aquifer was contaminated by mill effluent. Vegetation on the floodplain was predominantly deep-rooted, non-native tamarisk shrubs (Tamarix sp.). After the introduction of the tamarisk beetle (Diorhabda sp.) as a biocontrol agent, the health of the invasive tamarisk on the Shiprock floodplain declined. We used Landsat normalized difference vegetation index (NDVI) data to measure greenness and a remote sensing algorithm to estimate landscape-scale ET along the floodplain of the UMTRCA site in Shiprock prior to (2000–2009) and after (2010–2018) beetle establishment. Using groundwater level data collected from 2011 to 2014, we also assessed the role of ET in explaining seasonal variations in depth to water of the floodplain. Growing season scaled NDVI decreased 30% (p < .001), while ET decreased 26% from the pre- to post-beetle period and seasonal ET estimates were significantly correlated with groundwater levels from 2011 to 2014 (r2 = .71; p = .009). Tamarisk greenness (a proxy for health) was significantly affected by Diorhabda but has partially recovered since 2012. Despite this, increased ET demand in the summer/fall period might reduce contaminant transport to the San Juan River during this period.  相似文献   
90.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号