首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   10篇
  国内免费   1篇
测绘学   7篇
大气科学   12篇
地球物理   70篇
地质学   146篇
海洋学   31篇
天文学   15篇
综合类   3篇
自然地理   26篇
  2022年   4篇
  2021年   4篇
  2020年   8篇
  2019年   7篇
  2018年   9篇
  2017年   13篇
  2016年   10篇
  2015年   9篇
  2014年   11篇
  2013年   13篇
  2012年   11篇
  2011年   8篇
  2010年   9篇
  2009年   9篇
  2008年   15篇
  2007年   7篇
  2006年   10篇
  2005年   11篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   8篇
  1980年   9篇
  1979年   2篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1974年   5篇
  1972年   2篇
  1971年   5篇
  1967年   3篇
  1966年   2篇
  1963年   2篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1947年   1篇
排序方式: 共有310条查询结果,搜索用时 78 毫秒
81.
ABSTRACT

Hydrogeological hazards are increasingly causing damage worldwide due to climatic and socio-economic changes. Building resilient communities is crucial to reduce potential losses. To this end, one of the first steps is to understand how people perceive potential threats around them. This study aims at exploring how risk awareness of, and preparedness to, face hydrological hazards changes over time. A cohort study was carried out in two villages in the northeastern Italian Alps, Romagnano and Vermiglio, affected by debris flows in 2000 and 2002. Surveys were conducted in 2005 and 2018, and the results compared. The survey data show that both awareness and preparedness decreased over time. We attribute this change to the fact that no event had occurred in a long time and to a lack of proper risk communication strategies. The outcomes of this study contribute to socio-hydrological modelling by providing empirical data on human behaviour dynamics.  相似文献   
82.
Zusammenfassung Seit dem Anfang dieses Jahrhunderts sind mehrere Versuche gemacht worden, die Gesteine des baltischen Schildes nach Bildungs- und Deformationsperioden (Zyklen, Orogenesen) einzuteilen. Heute sprechen die meisten schwedischen Petrologen von Präsvekofennokarelium (oder Präsvekokarelium; > 2500 M. J.), Svekofennokarelium (oder Svekokarelium; 1750–2500 M. J.), Gotium (1150 bis 1750 M. J.) und Dalslandium (900–1150 M. J.). Das Svekofennokarelium scheint mindestens zwei Orogenesen zu umfassen — die svekofennidische (1800–2000 M. J.) und eine ältere Orogenese. Dagegen soll das Gotium hauptsächlich eine anorogene Ära sein.Die meisten der gotischen Gesteine sind Vulkanite und Granitoide. Da unter den Vulkaniten Ignimbrite häufig sind, interpretiert man sie als anatektische Gesteine, die vom svekofennidischen Orogen stammen, was auch für die Mehrzahl der gotischen Granitoide gilt. Die Eruption der Vulkanite hat im Zeitraum zwischen 1600 und 1750 M. J. stattgefunden, die Intrusion der Granitoide zwischen 1450 und 1750 M. J. (nachWelin u. Mitarb.). Die jüngsten gotischen Granitoide sind die Karlshamn-Spinkamåla-Halengranite in Blekinge und Schonen sowie die zweite Generation der Linagranite in Norrbotten und Lappland. Im Gegensatz zu den anderen gotischen Graniten werden diese von beträchtlichen Pegmatitintrusionen begleitet und können deshalb als digitale palingenetische Produkte eines postsvekofennidischen Orogens gedeutet werden.Während des Gotiums haben auch Eruptionen basischer Magmen stattgefunden, was besonders auf den späteren Teil des Zeitabschnittes, das Jotnium (1150 bis 1300 M. J.), zutrifft, als die anatektischen Magmen erschöpft waren. Die jotnischen Basite sind Diabase mit wenig Chrom ( 0,006% in normalen Gesteinen). Im südlichen Schweden kommt eine ältere Diabasart mit schwarz pigmentiertem Plagioklas (Hyperit) vor, die um 1250 M. J. tektonisiert wurde, während die jüngeren jotnischen Diabase keine tektonischen Veränderungen zeigen.Die jotnischen Sandsteine und Konglomerate sind vom Verfasser in Härjedalen, mittleres Schweden, untersucht worden und sind dort durch Einlagerungen jaspilitischer und tuffitischer Art gekennzeichnet. Die Gerölle des basalen Konglomerats zeigen marginale thermale Umwandlungen (Abb. 2). Es scheint darum, daß sich die subjotnische vulkanische Aktivität bis ins Jotnium fortgesetzt hat. Da einer der jüngsten subjotnischen Porphyre in Dalekarlien und Härjedalen 1670 M. J. alt ist und da eine Probe dalekarlischen jotnischen Sandsteins die Alterszahl 1185 M. J. ergeben hat, muß man mit einer beträchtlichen Länge der jotnischen Sedimentationsperiode rechnen.
Since the early twentieth several attempts have been made to divide the rocks of the Baltic shield into periods of development and deformation, viz. geological cycles or orogenies. Nowadays most Swedish petrologists distinguish between the pre-Svecofennokarelian (or the pre-Svecokarelian; > 2,500 M. Y.), the Svecofennokarelian (or the Svecokarelian; 1,750–2,500 M. Y.), the Gothian (1,150 –1,750 M. Y.), and the Dalslandian (900–1,150 M. Y.). The Svecofennokarelian seems to comprise at least two orogenies — the Svecofennian one (1,800–2,000 M. Y.) and an older one. The Gothian, on the contrary, is essentially an anorogenic era.Most Gothian rocks are acid volcanics and granitoids. Among the former ignimbrites are common. They have thus been interpreted as anatectic rocks originating from the Svecofennian orogeny, as well as have most Gothian granitoids, too. The extrusion of volcanics have ranged between 1,600 and 1,750 M. Y., the intrusion of granitoids between 1,450 and 1,750 M. Y., according to Eric Welin and co-workers. Youngest among the latter are the Karlshamn-Spinkamåla-Halen granites in Blekinge and Scania as well as the second generation of Lina granite in Norrbotten and Lappland. Contrary to the other Gothian granitoids these are associated with considerable amounts of pegmatite and could accordingly be suspected to represent distal palingenic products of an orogeny younger than the Svecofennian one.During the Gothian basic magma has also erupted, especially in Jotnian time, near the end of the era (1,150–1,300 M. Y.), when the anatectic magma was exhausted. The Jotnian basites are dolerites poor in chromium (60 p.p.m. in undifferentiated rocks). In Southern Sweden an older variety of dolerite with black-pigmented plagioclase (hyperite) was tectonized about 1,250 M. Y. ago, whereas the younger dolerites have escaped tectonization.The Jotnian sandstone and conglomerate have been examined by the writer in Härjedalen, Central Sweden, and have there been shown to contain basal intercalations of jaspilite and tuffites. Furthermore, the pebbles of the basal conglomerates have marginal rims indicating thermal alterations (Fig. 2). The sub-Jotnian volcanic activity seems thus to have proceeded into the Jotnian. As one of the youngest sub-Jotnian porphyries in Dalecarlia and Härjedalen has given the figure 1,670 M. Y. and one sample of Dalecarlian Jotnian sandstone has an age as low as 1,185 M. Y., the period of sedimentation ought to have been very long.

Résumé Dès le début du XXème siècle, ont été faites plusieurs tentatives de subdivision des roches du Bouclier baltique en périodes de mise en place et de déformation, c'est-à-dire en cycles géologiques ou orogénèses. Actuellement, la plupart des pétrographes suédois font la distinction entre le Pré-Svécofennocarélien (ou Pré-Svécocaré lien: > 2,500 millions d'années), le Svécofennocarélien (ou Svécocarélien: 1,750–2,500 M. A.), le Gothien (1,150–1,750 M. A.) et le Dalslandien (900–1,150 M. A.). Le Svécofennocarélien semble comprendre au moins deux orogénèses: l'orogénèse svécofennique (1,800–2,000 M. A.) et une autre plus ancienne. Par contre, le Gothien ne correspond qu'à une seule orogénèse.Les roches du Gothien sont en majorité des granitoïdes et des Vulcanites acides; parmi ces dernières prédominent des ignimbrites: Elles ont été considérées comme des roches anatectiques provenant de l'orogénèse svécofennique. La plupart des roches granitoïdes du Gothien auraient la même origine. L'extrusion des Vulcanites a eu lieu dans une période de 1,750 à 1,600 M. A., l'intrusion des granitoïdes s'est produite entre 1,750 et 1,450 M. A. (d'après Eric Welin et ses collaborateurs). Parmi ces dernières roches, les plus jeunes sont les granites de Karlshamn-Spinkamåla-Halen en Blekinge et en Scanie ainsi que la deuxième génération du granite de Lina en Bothnie septentrionale et en Laponie. Contrairement aux autres roches granitoïdes du Gothien, celles-ci sont associées à de grandes quantités de pegmatites et pourraient, par conséquent, être considerées comme les produits palingénétiques provenau d'une orogénèse plus jeune que l'orogénèse svécofennique.Durant le Gothien — plus précisément en fin du Jotnien (1,150–1,300 M. A.) lorsque le magma anatectique s'éleva — ont fait éruption des masses magmatiques basiques. Les roches basiques du Jotnien sont des dolorites pauvres en chrome ( 60 ppm teneur en chrome des roches quelconques). En Suède méridionale, une variété plus ancienne de dolérites, avec plagioclase à pigment noir (hypérite), a été tectonisée il y a environ 1,250 millions d'années, tandis que les dolérites plus récentes n'ont subi aucune déformation.Les grès et les conglomérats du Jotnien, étudiés par l'auteur dans la vallées de Härje (Härjedalen) en Suède centrale, comportent des intercalations basales de jaspilites et de tuffites. De plus, les galets du conglomérat basal présentent des modifications corticales indiquant des altérations thermiques: l'activité volcanique sub-jotnienne semblerait donc s'être prolongée jusque dans le Jotnien. Comme l'une des plus jeunes porphyrites sub-jotniennes de Dalécarlie et de Härjedalen date de 1,670 millions d'années et qu'un échantillon de grès jotnien de Dalécarlie remonte à 1,185 millions d'années, il est possible d'affirmer que la période de sédimentation a dû être très longue.

( ), svekofennokarelium ( Präsvekokarelium 2500 ), Svekofennokarelium ( Svekokarelium; 1750–2500 ), Gotium (1150–1750 ) Dalslandium (900–1150 ). Svekofennokarelium , , - , : Svekofennidische (1800–2000 ) — . Gotium, , . Gotium . . . , , , Svekofennidmm'a, Gotium. 1600–1750 , — 1450–1750 ( WELIN .). KarlshamnSpmkamala-Halenga Blekinge Schonen, Lina** Norrbotten . , , postsvekofennidischen . , — Gotium (1150–1300 ), . Jotnium ( < 0,006 %) (), 1250 , Jotnium . Jotnium Härjedalen, , . (. 2). , , Jotnium, Jotnium. . . Dalekarlien Härjedalen 1670 , Dalekarlien — 1185 , Jotnium .
  相似文献   
83.
Electronic absorption spectra have been measured at room temperature and pressure for polycrystalline samples of (Mg, Fe)SiO3 silicate perovskites synthesized by multi-anvil device. One strong near-infrared band at about 7000 cm-1 and several weak bands in the visible region were found. The near-infrared band at 7000 cm-1 is assigned to a spin-allowed transition of Fe2+ at the 8–12 coordinated site in perovskite. However, definite assignments of the weak bands in the visible region are difficult because of their low intensities and the scattering effect at the gain boundaries. Crystal field calculations for Fe2+ at different sites in perovskite have been carried out based on the crystal structure data. The results agree with the assignment of Fe2+ to the 8–12 coordinated site in perovskite. Crystal field stabilization energy of Fe2+ with coordination number of 8 in perovskite is 3332 cm-1 which is small compared to the octahedral site of magnesiowüstite (4320 cm-1), another important lower-mantle mineral.  相似文献   
84.
Markus Båth 《Earth》1981,17(4):315-398
The magnitude recommendations adopted by the IASPEI Assembly at Zürich in 1967 have had both a stabilizing and a stimulating effect on magnitude determinations and related research. From 1967 onwards, one magnitude research paper has appeared on the average almost every week, thus making this parameter the most studied one in seismology. New facilities and more accurate methods, e.g., concerning instrumental equipment and interpretation techniques, have made it possible to improve earlier achievements. The application of magnitude scales has been extended in all respects, e.g., with regard to epicentral distances, focal depths, wave types and wave periods. Magnitude—frequency relations have become the most investigated equations within seismology, observationally as well as theoretically. They have wide applications, e.g., for estimating the maximum magnitudes of future earthquakes — an important item in earthquake prediction. The magnitudes provide significant information on other source parameters, such as wave energy, fault length, seismic moment. Relations between different types of magnitude yield valuable information on source properties. For instance, relations between magnitudes based on body and surface waves are used for efficient discrimination between earthquakes and underground explosions. It is our purpose to review the magnitude development in the post-Zürich period (1967–1980), partly for geologists, tectonophysicists and engineers, who need an overview, partly for seismologists, who need an introduction to an overwhelmingly comprehensive literature.  相似文献   
85.
The growth rate has been measured in Mytilus edulis transferred in net bags to seven localities in the brackish Danish fjord, Limfjorden, in which certain areas are heavily eutrophicated. The increase in shell length, shell weight and flesh body weight was measured after growth periods of 14–18 days. The increase in, e.g., flesh dry weight ranged from twice the start weight to a four-fold increase of the start weight. The net growth efficiencies were estimated to be between 54 and 73%. Algal concentration was in no case the limiting growth factor, but low growth rates were observed in areas with seasonal oxygen depletion and release of toxic H2S from the sediments. It is suggested that measurements of actual growth in M. edulis can be a useful technique in the study of biological effects in marine recipients.  相似文献   
86.
For Swedish earthquakes, the average magnitude increases gently with the focal depth, whereas the seismic wave energy exhibits significant maxima at 15, 23 and 28 km depth. The earthquake fracture risk is estimated to be about 10?6 for an underground storage facility in a carefully selected site.  相似文献   
87.

Polarized absorption spectra of natural piemontite (Ca1.802Mn 2+0.178 Mg0.025) (Mn 3+0.829 Fe 3+0.346 Al1.825) [(Si2.992Al0.008) O12OH], viridine (Al1.945Mn 3+0.033 Fe 3+0.063 Mg0.003) [O|Si0.970 O4], and kanonaite (Al1.291Mn 3+0.682 Fe 3+0.019 ) [O|Si1.006 O4] were measured at 295 and ca. 100 K. For piemontite, lowering the temperature resulted in a sharpening of broad bands in the 10 000–25 000 cm−1 region supporting their assignment to single ion Mn3+ in M3 non-centrosymmetric sites.

Alternatively, in kanonaite, temperature behaviour pointed to a slightly stronger influence of vibronic coupling on strong bands near 16 000 and 22 000 cm−1, which supported an interpretation of Mn3+ in nearly centrosymmetric M1 sites. Measurements at ca. 100 K show pronounced fine structure in the viridine spectra which is attributed to Fe3+. The ɛ values for Mn3+ spin-allowed bands in the three minerals lie in the range 18 to 227 [1·g-atom−1·cm−1].

For the same band and polarisation, ɛ values in Mn3+-bearing andalusite-type minerals viridine and kanonaite are the same, which indicates an absence of strong magnetic coupling effects between Mn3+ ions in the andalusite type structure down to ca. 100 K.

In silicates, the high ɛ values for Mn3+ spin-allowed bands, in comparison to those obtained for Fe2+ spin-allowed bands from sites of “similar distortion”, is attributed to a higher degree of covalency in the Mn3+-O bonds compared to the Fe2+-O bonds, as a result of the higher valence state of manganese.

  相似文献   
88.
An experimental study initiated to calibrate the distribution coefficient \(K_D = \frac{{({\text{FeO}}/{\text{MgO}})_{{\text{ga}}} }}{{{\text{(FeO}}/{\text{MgO)}}_{{\text{cpx}}} }}\) in eclogites as a geothermometer has been done on (a) a mineral mis, (b) a glass of the typical tholeiite composition and (c) a series of glasses of tholeiite compositions with \(6.2 < \frac{{100{\text{Mg}}}}{{{\text{Mg}} + {\text{Fe}}^{ + + } }} < 93.\) The mineral mix was found to be unsuitable as reactant due to incomplete equilibration but the minimum K D of the mineral mix and the K D from glass of tholeiite composition are identical within experimental uncertainty. These data constitute a reversal of the garnet/clinopyroxene partition relationship and provide justification of the use of glass as a reactant for the project. To eliminate any uncertainty in interpretation of mineral analyses due to possible variation in Fe+++/Fe++ between runs, experiments were carried out in iron capsules on the nine tholeiite glasses, thus maintaining iron as Fe++. Microprobe analytical techniques yielded mineral analyses of comparable accuracy to analyses of natural phases for experiments within the temperature range from 600° C to 1500° C and a pressure range from 20 kb to 40 kb. It has been shown that for \(6.2 < \frac{{100{\text{Mg}}}}{{{\text{Mg}} + {\text{Fe}}^{ + + } }} < 85\) , the bulk chemical composition does not perceptibly affect the K D value. At 30 kb the K D value ranges from 18.0 at 600° C to 1.45 at 1400° C, defining the linear relationship in a ln K D vs 1/T(°K) plot. The pressure dependence of the K D -value has been shown to be greater than previously predicted. There is a straight line relationship in ln K D vs Pressure (Kb) between 20 and 40 kb at constant temperature (1100°C). This enables us to determine K D =fn (T, P) and \(T(^\circ {\text{K}}) = \frac{{3686 + 28.35 \times P({\text{Kb}})}}{{\ln K_D + 2.33}}\) . This expression uniquely determines the temperature of equilibration of natural eclogites of basaltic bulk composition when the K D ga,cpx is known and a pressure estimate can be given.  相似文献   
89.
Biomagnification     
Fisk AT  Hoekstra PF  Borgå K  Muir DC 《Marine pollution bulletin》2003,46(4):522-4; author reply 525-6
  相似文献   
90.
The Seve Nappes consist of long-transported thrust sheets belonging to the Upper Allochthon within the Scandinavian Caledonides. Eclogites from two different megalenses within the Seve Nappe Complex in Norrbotten (northern Sweden) have been dated with the Sm-Nd method. The two eclogite-bearing megalenses have been subjected to different pressure and temperature conditions during the high-pressure metamorphism. Garnet + omphacite + whole-rock from TS2 within the Tsäkkok Lens give an age of 505±18 Ma (2), I=0.512231±0.000024, MSWD=0.10. Garnet and whole-rock from TS5 and whole-rock TS3 also fall on the above isochron. The composite isochron gives an age of 503±18 Ma (2). These results are interpreted to date the peak of the high-pressure metamorphism (500–630° C and 12–15 kbars) for the Tsäkkok Lens. The eclogites in the Vaimok Lens (at Grapesvarre) were subjected to higher pressure and temperature conditions and more extensive reequilibration during the early cooling stages. Retrograde breakdown-reactions accompanied by retrograde zoning of relict garnet seems to be associated with disturbance of the Sm-Nd isotopic systems. In contrast, a sample with unzoned garnet and well preserved high-pressure mineralogy from Grapesvarre gives a Sm-Nd garnet + omphacite age of 503±14 Ma (2), I = 0.512010±0.000038 (2). The ages for the Seve eclogites are significantly older than the Sm-Nd eclogite dates from the Western Gneiss Region of Norway (WGR), suggesting the existence of at least two eclogite-forming events in the Caledonide Orogen. The younger event has been related to the main continent-continent collision stage of the Caledonian Orogeny, while the older event that led to the production of the Norrbotten eclogites must have taken place several hundred kilometres to the north and in a different tectonic setting more oceanward to the WGR. It appears that the older event (ca. 505 Ma) was restricted to the subduction of dyke-intruded sedimentary cover rocks which are thought to represent the rifted edge of the Baltic continent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号