首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2006年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1980年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A garnet population in Yellowknife schist, Canada   总被引:6,自引:0,他引:6  
Abstract Data are presented on a garnet population in a specimen of garnet-biotite-plagioclase-quartz schist from the cordierite zone of an Archaean thermal dome in the Southern Slave Province of the Canadian Shield. Garnet crystals are bounded by planar dodecahedral faces and by trapezohedral faces which on the 10-μm scale are corrugated. Crystal distribution, as revealed by dissection of a small cubic volume of rock, is random. The size distribution is normal, with a mean diameter of 0.81 mm and a standard deviation of 0.32 mm. In the largest crystal of the population (mean radius 0.83 mm), [Mn] = 100 Mn/(Fe + Mg + Mn + Ca) decreases from 14.5 at the centre to 7.5 and then increases in the outer margin to 8.5; [Fe] increases continuously from 67 at the centre to 77 at the surface; [Mg] increases from 12.5 to 13.5 and then falls sharply to 11; [Ca] remains unchanged at 4.0 and then drops to 3.3. Progressively smaller crystals have progressively lower [Mn] and higher [Fe] concentrations at their centres, while all crystals have the same margin composition. Growth vectors extending from given concentration contours to crystal surfaces are of equal length regardless of the size of the crystal in which the vector is located. A garnet-forming model is presented in which reaction was initiated by a rise in temperature. Nucleation sites were randomly selected. The nucleation rate increased with time and then declined. Crystal faces advanced at a constant linear rate, which implies an increase in volume proportional to surface area. Initially, the composition of garnet deposited on crystal surfaces was determined by van Laar equations of equilibrium, which demanded the withdrawal of Mn and Fe from within chlorite crystals. This transfer reaction was then accompanied by an ion exchange reaction which moved Mn and Fe to garnet surfaces from biotite, in exchange for Mg. The exchange reaction provides an explanation for the high overall concentration of Mn and Fe in garnet and for the observed Mn and Mg reversals in the margins of crystals. The increase of garnet volume in the garnet population is found to be parabolic, i.e. Vαα5.  相似文献   
2.
An analysis is presented of equilibrium in six specimens ofgarnet—biotite—sillimanite—plagioclase—potashfeldspar—quartz ... gneiss from a metamorphic terrainin south-western Quebec. A nearly uniform Ti content of biotite may be accounted forby an equilibrium (a) involving biotite, sillimanite, quartz,garnet, potash feldspar, and H2O. The nature of the distributionof Fe and Mg between garnet and biotite may be accounted forby another equilibrium (b) involving the same mineral suite,or by a simple exchange equilibrium (c) involving only garnetand biotite. The distribution of Mn between garnet and biotiteis accounted for by an exchange equilibrium (d). A nearly uniformvalue of the ratio Ca content of plagioclase/Ca content of garnetmay be accounted for by an equilibrium (e) involving plagioclase,garnet, sillimanite, and quartz. A proposed equilibrium (f)involving biotite, quartz, ilmenite, potash feldspar, sillimanite,and H2O conflicts with equilibrium (a) and was evidently notestablished in the gneisses. The factors governing the Ca contentof biotite remain largely unknown. Some of these equilibria form potential indicators of relativegeologic temperature, pressure, and chemical potential of H2O.  相似文献   
3.
Marble occurs abundantly in a 31,000 km2 segment of the southernGrenville Province of the Canadian Precambrian Shield, whereit is associated with quartzite, biotite-garnet gneiss, andamphibolite to form the Grenville Group. An 1800 km2 area onthe western margin of this segment, north of the Ottawa river,displays a great variety of carbonate rocks, which may be dividedinto two groups: (I) major marble, with calcite, dolomite, graphite, phlogopite,Ca amphibole, Ca pyroxene, forsterite, humite group minerals, (II) minor marble, with pink calcite, phlogopite, Ca amphibole,Ca pyroxene, K feldspar, scapolite, sphene. Rocks of the first group are associated with plagioclase gneissand amphibolite, and are metamorphosed limestone, little affectedby metasomatism; rocks of the second group, which are less common,are associated with potassium feldspar gneiss and heterogeneousgranitic and syenitic rocks, and are inferred to be metasomaticrocks. Numerous mineral reactions have taken place in the carbonaterocks during metamorphism. The calcite-dolomite reaction, whichgoverns the Mg content of calcite, indicates a metamorphic temperatureof about 650 °C. Forsterite was possibly produced from low-Alamphibole, and forsterite + spinel from high-Al amphibole. Thecrystallization of some silicate minerals in the minor marbleunits, and the enrichment in the contained calcite in Fe andSr are attributed to metasomatic reactions. Metamorphic ion-exchangereactions involving carbonates produced the following distributioncoefficients: Sr in calcite/Sr in dolomite = 2.5 Mn in calcite/Mn in dolomite = 0.89 Fe in calcite/Fe in dolomite = 0.29 from which inferences may be drawn concerning the distributionof these elements between the Ca and Mg sites within dolomiteduring metamorphic crystallization. Ion-exchange reactions involvingsilicates produced the following distribution of Mn: humite group Ca pyroxene.Ca amphibole phlogopite where the numbers are distribution coefficients. An equilibriumdistribution of Fe between silicates and calcite in the minormarble was evidently not attained during metasomatic crystallization.Numerous retrograde reactions have taken place, including thealteration of pyroxene to amphibole, forsterite to serpentine,and the exsolution of dolomite from calcite. Forsterite in marble, and orthopyroxene in the associated gneissesand amphibolites crystallized sporadically in the Laurentianhighlands, but not in the lowlands of the Ottawa rift valley,where peak metamorphic temperatures may have been slightly lower.In the highlands, reactions to produce forsterite and orthopyroxenewere initiated in response to a local increase in temperature,local peculiarities in the chemical composition of amphibole,which produced these minerals, or a local decrease in the activityof CO2 and H2O in the grain-boundary phase.  相似文献   
4.
Interpretation of the Shape of Mineral Grains in Metamorphic Rocks   总被引:3,自引:4,他引:3  
KRETZ  R. 《Journal of Petrology》1966,7(1):68-94
Grain boundary angles at junctions of three scapolite grainsin a scapolite-pyroxene-sphene rock measure 120 degrees witha standard deviation of 7.5 degrees. These data are comparableto those obtained from annealed metals, and indicate a closeapproach to static equilibrium of interfacial tensions. An examination of hornblende-hornblende and biotite-biotiteinterfaces in gneisses has shown that for certain angles ofmisorientation, the interface lies parallel to a plane of lowindices in one of the adjacent grains. These interfaces areconsidered to possess lower free energy than those of differentorientations. An examination of inclusions of quartz in grains of hornblende,biotite, and garnet has revealed a tendency for hornblende toimpose its {110} form, biotite its {001} form, and garnet its{110} form on the inclusions, regardless of the crystallographicorientation of the inclusions relative to the host. The facesof these forms, when in contact with quartz, are consideredto be interface of relatively low specific interfacial freeenergy, and the particular forms are considered to be presentin the equilibrium shapes of the corresponding minerals. The shape and dimensions of phlogopite and pyroxene grains inmarble have been examined and measured. Although ratios of dimensionsare not constant, as demanded by the Wulff theorem, the presenceof a degree of regularity in the shape of the phlogopite andpyroxene grains is taken to indicate that interfacial energyis relatively low. Consideration is given to the forms displayed by various metamorphicminerals, when grains of these are embedded in a quartz-feldspargrain aggregate. An attempt is made to assess the effect oftemperature, adsorption, and composition on interfacial energyin metamorphic rocks. The Becke crystalloblastic series of mineralscan be refined by application of the principles of interfacialenergy. It is concluded that several aspects of the shape of mineralgrains in metamorphic rocks can be attributed to a local reductionor minimization of interfacial free energy.  相似文献   
5.
Garnet-biotite gneisses, some of which contain sillimanite or hornblende, are widespread within the Otter Lake terrain, a portion of the Grenville Province of the Canadian Shield. The metamorphic grade is upper amphibolite to, locally, lower granulite facies. The atomic ratio Fe2+/(Fe2++ Fe3+) in biotite ranges from 0.79 to 0.89 (ferrous iron determinations in 10 highly pure separates), with a mean of 0.86. Mg and Fe2+ atoms occupy 67–78% of the octahedral sites, the remainder are occupied by Fe3+, Ti, and Al, and some are vacant. Mg/(Mg + Fe2+), denoted X, in the analysed samples ranges from 0.32 to 0.65. Garnet contains 1–24% grossular, 1–12% spessartine and X ranges from 0.07 to 0.34. Compositional variation in biotite and garnet is examined in relation to three mineral equilibria: (I) biotite + sillimanite + quartz = garnet + K-feldspar + H2O; (II) pyrope + annite = almandine + phlogopite; (III) anorthite = grossular + sillimanite + quartz. Measurements of X (biotite) and X (garnet) are used to construct an illustrative model for equilibrium (I) which relates the observed variation in X to a temperature range of 70°C or a range in H2O activity of 0.6; the latter interpretation is preferred. In sillimanite-free gneisses, the distribution of Mg and Fe2+ between garnet (low in Ca and Mn) and biotite is adequately described by a distribution coefficient (KD) of 4.1 (equilibrium II). The observed increase in the distribution coefficient with increasing Ca in garnet is ln KD= 1.3 + 2.5 × 10?2 [Ca] where [Ca] = 100 Ca/(Mg + Fe2++ Mn + Ca). The distribution coefficient is apparently unaffected by the presence of up to 12% spessartine in garnet. In several specimens of garnet-sillimanite-plagioclase gneiss, the Ca contents of garnet and of plagioclase increase in unison, as required by equilibrium (III). The mean pressure calculated from these data (n= 17) is 5.9 kbar, and the 95% confidence limits are ±0.5 kbar.  相似文献   
6.
Garnet–biotite–(sillimanite) gneiss (~700 °C, 7 kbar) of the Otter Lake area in the Western Grenville Province (Canadian Shield) occurs as granitic gneiss (group 4) that forms a large part of the Otter Complex, and as widely distributed, more heterogenous metasedimentary gneiss (group 2). In one sample of group 4 gneiss (Qtz25 Pl34 Kfs28 Bt10 Grt2.5 Sil1) the true diameter (determined by serial grinding) of subhedral garnet crystals ranges from 0.2 to 3.0 mm, with a mode at 1.0 mm. Nearest‐neighbour measurements in this sample, and in surfaces of nine additional samples (all <5% garnet) confirm that garnet crystals are distributed mainly at random; slight clustering was detected in two samples. In one sample of group 4 gneiss, microprobe analyses on sections through crystal centres (obtained by serial slicing), reveal that small crystals and margins to large crystals contain more Fe and Mn and less Mg than the broad central regions of large crystals. Based on these and previous results, together with theoretical considerations, a crystallization model is proposed, in which, (i) garnet was produced by the continuous reaction, Ms + Bt + Qtz → Grt + Kfs + H2O, (ii) nucleation occurred by the random selection of randomly distributed Ms–Bt–Qtz triple junctions, (iii) the rate of linear growth remained constant, and (iv) as temperature increased, the rate of nucleation first increased slowly, then remained nearly constant, and finally declined. Within‐population compositional homogenization was followed, on cooling, by local Fe–Mg–Mn exchange with biotite.  相似文献   
7.
In the southern Grenville Province of the Canadian Shield (Otter Lake area), high-grade marble, gneiss and amphibolite have been folded about north- to north-east-trending axes; mylonite zones, parallel to layering and 0.1–10  cm wide, are locally present in marble.
In nonmylonitic marble, graphite occurs as c . 1–mm hexagonal prisms, which are commonly accompanied by a relatively few crystals that have been deformed, resulting in cleavage separation and the formation of folds and kink bands. Fracture-filled calcite contains less Mg and Fe than surrounding calcite (e.g. <0.30 compared with 1.8–2.7  wt% MgO, and 0.02–0.12 compared with 0.13–0.18  wt% FeO); the composition of fracture-filled dolomite is similar to that of the surrounding dolomite. In semimylonite, graphite forms elongate streaks of fragmented crystals and, in mylonite, further fragmentation has occurred to produce extremely small particles. The fragmentation has not destroyed the atomic structure (hexagonal modification) of graphite.
The behaviour of biotite was similar to that of graphite, but extreme fragmentation did not occur. Dolomite was more rigid than calcite, and in mylonite it occurs more commonly as relics. Amphibole and pyroxene crystals remained undeformed but are locally replaced by calcite.
The numerous microprocesses that have evidently occurred in marble and mylonitic marble of the study area are: coarsening (calcite, graphite), twinning (calcite, dolomite), slip (calcite, dolomite, graphite, biotite), strain-induced recrystallization (calcite), microfolding and kink-band formation (graphite, biotite), fragmentation (graphite) and the pressure-induced transport of calcite and dolomite to voids in graphite and biotite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号