首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   22篇
  国内免费   5篇
测绘学   1篇
大气科学   5篇
地球物理   89篇
地质学   76篇
海洋学   49篇
天文学   68篇
自然地理   11篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   12篇
  2006年   10篇
  2005年   22篇
  2004年   10篇
  2003年   12篇
  2002年   8篇
  2001年   7篇
  2000年   10篇
  1999年   2篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有299条查询结果,搜索用时 16 毫秒
281.
The duration of the soil‐depth recovery needed for reoccurrence of shallow colluvial landslides at a given site in humid regions is much longer than the return period of rainfall needed to generate sufficient pore water pressure to initiate a landslide. Knowledge of the rate of change in soil depth in landslide scars is therefore necessary to evaluate return intervals of landslides. Spatial variation in sediment transport at the Kumanodaira landslide scar in central Japan was investigated by field observations. Spatial distribution of the rate of change in soil depth was estimated using sediment transport data and geographic information system (GIS) analysis. Observations revealed that the timing of sediment transport differed for shallow and deep soil layers. Near‐surface sediment transport (mostly dry ravel and some shallow soil creep at depths ≤0·05 m) measured in sediment traps was active in winter and early spring and was affected by freezing–thawing; soil creep of subsoil (i.e. >0·05 m), monitored by strain probes, was active in summer and autumn when precipitation was abundant. Near‐surface sediment flux was estimated by a power law function of slope gradient. Deeper soil creep was more affected by relative location to the landslide scar, which influences soil depth, than by slope gradient. Our study indicated that the rate of soil‐depth recovery is high just below the head scarp of the landslide. Abrupt changes in the longitudinal slope topography immediately above, within and just below the head scarp became smoother with time due to degradation proximate to the landslide head scarp and flanks, as well as aggradation just below the head scarp. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
282.
The MU radar of RISH (Research Institute for Sustainable Humanosphere, Kyoto University), which is a MST radar (46.5 MHz, 1 MW peak power), has been successfully applied to meteor studies by using its very high versatility. The system has recently renewed with 25 channel digital receivers which significantly improved the sensitivity and precision of interferometer used in meteor observation. The transmission is now synchronized to GPS signals, and two external receiving sites with a ranging capability has additionally been operated in order to determine the trajectories and speeds of meteoroids.  相似文献   
283.
The Nobeoka Thrust of Southwest Japan is an on‐land example of an ancient megasplay fault that provides an excellent record of deformation and fluid flow at seismogenic depths. The present study reports: (i) temporal stress changes for the seismogenic period of the Nobeoka Thrust; and (ii) spatial heterogeneities in driving pressure ratios P* obtained from mineral veins around the Nobeoka Thrust fault zone. Many quartz veins that filled mode I cracks can be observed in the hanging wall and footwall of the thrust. Inversion for stress orientation suggests that normal faulting dominated in both the hanging wall and footwall, with similar stress axis orientations in both. The orientation of σ3 for the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust. The detected normal‐faulting‐type stress regimes likely resulted from post‐seismic stress buildup after megathrust earthquakes. The hanging wall of the Nobeoka Thrust has smaller P* values than the footwall. Two possible explanations are proposed for the observed spatial variations in the driving pore fluid pressure ratio, P*: spatial variations in pore fluid pressure Pf are directly responsible for P* variations, or P* variations are controlled by differences in mechanical properties between the hanging wall and footwall.  相似文献   
284.
Geoelectric and hydrologic surveys during spring tides revealed the spatiotemporal distribution of groundwater quality produced by tidal forcing in Fongafale Islet, Funafuti Atoll, Tuvalu. The observed low resistivity showed that saline water largely immersed the surficial Holocene aquifer, indicating that there is no thick freshwater lens in Fongafale Islet, unlike in other atoll islands of comparable size. Half of the islet was constructed by reclaiming the original swamp with porous, highly permeable coral blocks; this reclaimed area should not be considered as part of the islet width for calculation of the expected thickness of the freshwater lens. The degree of aquifer salinization depends on the topographic characteristics and the hydrologic controls on the inland propagation of the tidal forcing. Large changes in bulk resistivity and the electrical conductivity of groundwater from wells indicate that periodic salinization in phase with the semidiurnal tides was occurring widely, especially in areas at lower elevation than the high-tide level and in reclaimed areas with high permeability. Thin sheets of nearly fresh and brackish water were observed in the surficial aquifer in areas above the high-tide level and in taro swamps, respectively. The thinness of the brackish and freshwater sheets suggests that the taro swamps and the fresh groundwater resources of the islet are highly vulnerable to salinization from anticipated sea-level rise. An understanding of the inherent geologic and topographic features of an atoll is necessary to evaluate the groundwater resources of the atoll and assess the vulnerability of its water resources to climate change.  相似文献   
285.
The peri‐Arabian ophiolite belt, from Cyprus in the west, eastward through Northwest Syria, Southeast Turkey, Northeast Iraq, Southwest Iran, and into Oman, marks a 3000 km‐long convergent margin that formed during a Late Cretaceous (ca 100 Ma) episode of subduction initiation on the north side of Neotethys. The Zagros ophiolites of Iran are part of this belt and are divided into Outer (OB) and Inner (IB) Ophiolitic Belts. We here report the first Nd–Hf isotopic study of this ophiolite belt, focusing on the Dehshir ophiolite (a part of IB). Our results confirm the Indian mid‐oceanic ridge basalt (MORB) mantle domain origin for the Dehshir mafic and felsic igneous rocks. All lavas have similar Hf isotopic compositions, but felsic dikes have significantly less‐radiogenic Nd isotopic compositions compared to mafic lavas. Elevated Th/Nb and Th/Yb in felsic samples accompany nonradiogenic Nd, suggesting the involvement of sediments or continental crust.  相似文献   
286.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   
287.
A survey of emission-line stars was carried out in the CMa star formation region, based on spectral observations with the Kiso Schmidt telescope. In total, 128 emission-line stars were detected, ranging fromV=6 to 15, and the majority are found withV between 11 and 14. A comparison with the existing catalogues shows that some emission-line stars are common with ours, while some exhibit no detectable emission line on our plates, suggesting the variability of emission-line strength. The two-colour (U–B, B–V) diagram is also shown for the detected stars.Paper presented at the IAU Third-Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.On leave from the Bosscha Observatory, Institute of Technology Bandung, Indonesia.  相似文献   
288.
289.
Ultrasonic laboratory measurements of P-wave velocity (Vp) were carried out up to 1.0 GPa in a temperature range of 25–400 °C for crustal and mantle xenoliths of Ichino-megata, northeast Japan. The rocks used in the present study cover a nearly entire range of lithological variation of the Ichino-megata xenoliths and are considered as representative rock samples of the lower crust and upper mantle of the back arc side of the northeast (NE) Honshu arc. The Vp values measured at 25 °C and 1.0 GPa are 6.7–7.2 km/s for the hornblende gabbros (38.6–46.9 wt.% SiO2), 7.2 km/s for the hornblende-pyroxene gabbro (43.8 wt.% SiO2), 6.9–7.3 km/s for the amphibolites (36.1–44.3 wt.% SiO2), 8.0–8.1 km/s for the spinel lherzolites (46.2–47.2 wt.% SiO2) and 6.30 km/s for the biotite granite (72.1 wt.% SiO2). Combining the present data with the Vp profile of the NE Honshu arc [Iwasaki, T., Kato, W., Moriya, T., Hasemi, A., Umino, N., Okada, T., Miyashita, K., Mizogami, T., Takeda, T., Sekine, S., Matsushima, T., Tashiro, K., Miyamachi, H. 2001. Extensional structure in northern Honshu Arc as inferred from seismic refraction/wide-angle reflection profiling. Geophys. Res. Lett. 28 (12), 2329–2332], we infer that the 15 km thick lower crust of the NE Honshu arc is composed of amphibolite and/or hornblende (±pyroxene) gabbro with ultrabasic composition. The present study suggests that the Vp range of the lower crustal layer (6.6–7.0 km/s) in the NE Honshu arc, which is significantly lower than that obtained from various seismic measurements (e.g. the northern Izu-Bonin-Mariana arc: 7.1–7.3 km/s), is due to the thick hydrous lower crustal layer where hornblende, plagioclase and magnetite are dominant.  相似文献   
290.
Subsurface temperature is affected by heat advection due to groundwater flow and surface temperature changes. To evaluate their effects, it was implemented the measurements of temperature-depth profile (T-D profile) and the continuous monitoring of soil temperature in the southern part of Kamchatka which has not affected by human activity. Additionally, stable isotopic compositions of surface water and groundwater were analyzed. T-D profile and stable isotopic compositions show groundwater flow system is differ from the shallow aquifer to the deep aquifer. In the shallow aquifer, T-D profile suggests the existence of upward groundwater flux. On the other hand, the annual variation of soil temperature is divided into the large variation period (VP) and the stable period (SP) by the magnitude of daily and seasonal variation. VP and SP correspond to the summer and the winter season, respectively, and it considers that the difference between VP and SP is caused by the effect of snow cover. Therefore, the T-D profile is affected by not only upward groundwater flux but also the surface warming particularly in the summer season (VP).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号