首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   22篇
  国内免费   5篇
测绘学   1篇
大气科学   5篇
地球物理   88篇
地质学   76篇
海洋学   49篇
天文学   68篇
自然地理   11篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   12篇
  2006年   10篇
  2005年   22篇
  2004年   10篇
  2003年   12篇
  2002年   8篇
  2001年   7篇
  2000年   10篇
  1999年   2篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有298条查询结果,搜索用时 323 毫秒
191.
We studied fragmentation process of the interstellar molecular cloud which is predominated by supersonic turbulence with special regard to collisions of turbulent gas elements and formation of a shock-compressed layer by receding shock waves. The propagation of the shock waves and the evolution of the compressed layer are followed by one-dimensional gas dynamical simulation until self-gravity becomes significant, taking account of the effects of thermal properties of the molecular gas and magnetic fields. It is shown that the efficient cooling by CO molecules and its sensitive dependence on gas density make the shock-compressed layer so cold and dense that the layer becomes gravitationally unstable and breaks into fragments even if the gas elements are gravitationally stable prior to the collision. The mass of the unstable fragment is estimated to be about two solar masses or less, irrespective of the presence of the magnetic field. The stars formed by collisions of supersonic turbulent gas elements accelerate the surrounding gas in T Tauri stage and replenish the turbulent energy to maintain the mechanical equilibrium of the molecular cloud.  相似文献   
192.
A practical method is described of initiating a water mass curtain (a jet flow of water partitioning another body of water) to be used to control fish movements, along with its theoretical analysis. In this paper, equations to evaluate the change of density and upward flow rates in a water curtain due to entrainment are presented, and the accuracy of the equations is verified experimentally. The discontinuity of the density on the boundary between jet and ambient fluid was assumed in the analysis, since our experiments showed that the instantaneous density distribution was discontinuous. The equations are much simpler than the conventional formulae deduced by assuming a Gaussian curve, and are amenable to practical usage. The control efficiency of the water curtain is very good for young red sea bream.  相似文献   
193.
Relative little is known about the interaction between climate change and groundwater. Analysis of aquifer response to climatic variability could improve the knowledge related to groundwater resource variations and therefore provides guidance on water resource management. In this work, seasonal and annual variations of groundwater levels in Kumamoto plain (Japan) and their possible interactions with climatic indices and El Niño Southern Oscillation (ENSO) were analyzed statistically. Results show the following: (1) The water level in the recharge area mainly fluctuates at 1‐ and 2‐year periods, whereas the significant periodicity for water level oscillation in the coastal aquifer is 0.5 year. (2) The aquifer water levels are possibly influenced by variability in precipitation, air temperature, barometric pressure, humidity variances and ENSO. Relative high correlations and large proportions of similarities in wavelet power patterns were found between these variables and water levels. (3) Aquifer response to climatic variances was evaluated using cross wavelet transform and wavelet coherence. In recharging aquifers, the ENSO‐induced annual variations in precipitation, air temperature, humidity and barometric pressure affect aquifer water levels. The precipitation, air temperature and humidity respond to ENSO with a 4‐, 6‐ and 8‐month time lag, respectively, whereas the ENSO imparts weak influence on the barometric pressure. Significant biennial variation of water levels during 1991–1995 is caused primarily by precipitation and humidity variations. In the coastal aquifer, the 0.5‐year variability in ENSO is transferred by precipitation, barometric pressure and humidity to aquifer water levels, and the precipitation/humidity influence is more significant comparing with the barometric pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
194.
Mid-infrared images of almost the entire Venus nightside hemisphere obtained by the Longwave Infrared Camera (LIR) onboard Akatsuki on December 9 and 10, 2010 reveal that the brightness temperature of the cloud-top ranges from 237 K in the cold polar collars to 243 K in the equatorial region, significantly higher than the values obtained by Venera 15. Other characteristic features of the temperature distributions observed are zonal belt structures seen in the middle and low latitudes and patchy temperature structures or quasi-periodic streaks extending in a north–south direction in the northern middle latitudes and southern low latitudes.  相似文献   
195.
In this study, we use borehole temperature data and stable isotopes to delineate the flow system and estimate the effect of urbanization in the Nagaoka area of Japan. Temperature profiles were measured four times in observation wells during the period 2000-2001 and compared with those measured in the same wells during the period 1977-1983 (Taniguchi 1986). Water was sampled in both observation and pumping wells during the same period. The temporal and spatial variability in temperature indicate clearly the effect of urban warming and heavy pumping on the ground water system. Urban warming caused higher temperatures recently as compared to the older values, and pumping caused induced recharge from the river to the ground water. The stable isotope data show the ground water flow system is divided into shallow, intermediate, and deep systems, and that land use and infiltration rate are affecting the shallow flow system.  相似文献   
196.
A recent trend in the design of base‐isolated structures is the extension of the natural period and the incorporation of high damping. This paper shows that the existing simplified methods perform less accurately in this field of application, mainly due to inappropriate use of spectral data and insufficiently adjusted equivalent models. The paper proposes new period‐dependent concepts to reduce pseudo‐acceleration spectra and to transform these values into total accelerations with respect to the viscous damping ratio. The model of equivalent damping is adjusted to reflect several period‐dependent effects. The estimation of the accelerations in MDOF systems is based on additional period shifts. All modifications are derived for a simplified linear approach based on eigenforms, and a non‐linear approach based on pushover and capacity spectrum analysis. To illustrate observed problems and to demonstrate the capabilities of the proposed concepts, example structures are studied in detail. Furthermore, intensive statistical tests prove the effectiveness of the modifications in a wide parameter range and show considerable improvements over traditional approaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
197.
We calculated statistical average of thermal data to speculate regional thermal structure of the forearc area of the Japanese Islands. The three thermal statistical averages show a difference of a high thermal regime in the western part of forearc inner zone and a low in the Kanto forearc outer zone. The Kanto zone marks 18 K km−1 for mean geothermal gradient, 44 mW m−2 for mean heat flow, while the western inner zone shows 27 K km−1 for mean geothermal gradient, 63 mW m−2 for mean heat flow. The geothermal gradients of the Nobi Plain and the Osaka Plain in the western inner zone are 29 and 36 K km−1, respectively, while the value of the Kanto Plain in the Kanto zone is 21 K km−1. Taking account of the effect of accumulation of sediments, we see the difference in the thermal regime between the plains and conclude that the difference is significant. Heat flux in the crust depends on the volume of granite rich in radioactive elements. There are few granitic rocks in the Kanto zone, while granitic rocks are dominant in the western inner zone. The heat flow of 20 mW m−2 is attributed to the granitic rocks of about 8 km in thickness. There are two oceanic plate subductions of the Pacific plate and the Philippine Sea plate under the Kanto zone, while only the Philippine Sea plate has been subducting under the western inner zone. The model simulation based on thermal and subduction model shows a heat flow ranging 50-60 mW m−2 in the southwest Japan forarc area and a low value of about 20 mW m−2 in the northeast Japan forearc area. The heat flux from the cooling oceanic lithosphere depends on the age of plate. The Shikoku Basin, a part of the Philippine Sea plate, off the western inner zone is 15-30 Ma, while the Pacific plate off the Kanto zone is 122-132 Ma. Theoretically, heat flux values of 15 and 50 Ma oceanic plates range 60-120 mW m−2 and those of 122-132 Ma could be about 10 mW m−2. If the heat flux contribution from the Philippine Sea plate under the Kanto zone is smaller than the plate under the western inner zone, there could be a thermal regime difference in order of several tens of mW m−2. Conclusively, the cause of the difference of heat flux could be the uneven granitic rocks distribution and/or the difference of heat flux between the two subducting plate.  相似文献   
198.
Subsurface temperatures were analyzed to evaluate the effects of urbanization and groundwater flow in Osaka, the second largest metropolitan in Japan. The temperature-depth profiles were classified into three (recharge, intermediate and discharge) types based on the thermal gradient, shape of the profiles, and temperature itself. The locations of the three types of profiles represent the places of regional and local groundwater flow systems in Osaka plain. The analyses of subsurface temperature using heat conduction-convection theory under the condition of surface warming showed that the depth of minimum temperature in the profile increased with the groundwater recharge rate and time lapse from the beginning of surface warming due to urbanization. Comparisons between observed and estimated temperature profiles showed that the surface warming due to urbanization is larger and occurred earlier in the middle of the city than those in surrounding area, which agreed with the air temperature records.  相似文献   
199.
In order to infer past climatic change in central Japan, we measured temperatures in a borehole at the Karasuma site, on the southeastern coast of Lake Biwa, and reconstructed sediment surface temperature history during the last 3000 years. The reconstructed temperature history shows apparent Medieval Warm Period, Little Ice Age, and contemporary temperature warming. However, the large amplitude of the temperature changes up to 4-5 K cannot be explained by past climatic change only, suggesting that there was some other cause of the larger amplitude temperature changes. The onsets of temperature decrease in the late 12th century a.d. and temperature increase in the mid 17th century a.d. appear to coincide with occurrences of two destructive earthquakes (1185 and 1662 a.d.) that caused water level changes of Lake Biwa. It suggests that the reconstructed sediment surface temperature history reflects the environmental change due to tectonically induced water level changes of the lake. If the annual mean of the ground surface temperature was higher than that of the bottom water temperature in a shallow part of the lake, which is consistent with the present-day data, the large amplitude of the sediment surface temperature change may be attributed to a combined effect of past climatic and environmental changes. Thus, we suggest that the borehole temperature at the Karasuma site preserves information not only on past climate changes but also on environmental changes due to tectonically induced water level changes.  相似文献   
200.
Long-term temperature monitoring was carried out in a borehole drilled for investigation of the Nojima fault, an active fault in SW Japan, using the distributed optical fiber temperature sensing (DTS) technique. Temperatures in the borehole had been measured every 1 m along an optical fiber cable with a resolution of about 0.1 K over a period of 6 years. Water injection experiments were conducted in this borehole in 1997, 2000 and 2003. Monitoring of the temperature profile was started after the first injection experiment, and the temperature profile remained very stable until the start of the second injection experiment. During the second and third experiments, the temperatures in the borehole dropped due to cooling by the injected water but no appreciable temperature change was observed below about 580 m. It clearly shows that the water leaked out of the hole around this point and the leaking depth is estimated to be about 540 m based on the shape of the temperature profile. After the injection was stopped, the recovery of the temperature to the undisturbed profile was exceptionally slow around the leaking point, resulting in a local temperature anomaly, probably because the water leaking out of the hole had cooled the surrounding formations extensively. A very similar temperature anomaly was observed at the beginning of temperature monitoring, which suggests that water leaked out at the same depth in the first injection experiment as well. Between the second and third injection experiments, the top of the borehole was kept open to allow groundwater discharge for about 1 month in 2000 and 2003. In both periods, groundwater flowed out continuously and the shapes of the observed temperature profiles indicate that the groundwater entered in the hole at the same depth as the leaking point during the injection experiments. The temperature records also show that the rate of discharge had been nearly constant through the two test periods. The water discharge appears to have been little affected by the water injection. These results demonstrate that the optical fiber temperature monitoring system is a very effective tool for hydrological experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号