首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
测绘学   1篇
大气科学   4篇
地球物理   1篇
地质学   44篇
自然地理   8篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1990年   2篇
  1988年   2篇
  1986年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有58条查询结果,搜索用时 250 毫秒
21.
Oxygen Isotope Geochemistry of Oceanic-Arc Lavas   总被引:19,自引:11,他引:8  
Variations of oxygen isotope ratios in arc-related lavas canconstrain the contributions of subducted crustal igneous rocks,sediments, and fluids to the sub-arc mantle. We have measuredoxygen isotope ratios in 72 arc and back-arc lavas from fiveocean–ocean subduction zone systems using laser-fluorinationanalyses of olivine and other phenocrysts and glass. Eightypercent of our samples have  相似文献   
22.
23.
The painted turtle, Chrysemys picta , and the snapping turtle, Chelydra serpentina , occur in aquatic habitats north of Lake Superior in boreal forest and cold prairie areas across Canada, and have by far the most northern range of any modern North American chelonian taxa. These two species are also the dominant turtles of the North American Pleistocene glacial ages and were among the first species to invade formerly glaciated areas at the end of the Wisconsinan. These Pleistocene occurrences are documented here. Several remarkable behavioral, physiological and reproductive adaptations that may act together to allow these species to survive in such northern areas are discussed.  相似文献   
24.
Dolomite [Ca,Mg(CO3)2] precipitation from supersaturated ionic solutions at Earth surface temperatures is considered kinetically inhibited because of the difficulties experienced in experimentally reproducing such a process. Nevertheless, recent dolomite is observed to form in hypersaline and alkaline environments. Such recent dolomite precipitation is commonly attributed to microbial mediation because dolomite has been demonstrated to form in vitro in microbial cultures. The mechanism of microbially mediated dolomite precipitation is, however, poorly understood and it remains unclear what role microbial mediation plays in natural environments. In the study presented here, simple geochemical methods were used to assess the limitations and controls of dolomite formation in Deep Springs Lake, a highly alkaline playa lake in eastern California showing ongoing dolomite authigenesis. The sediments of Deep Springs Lake consist of unlithified, clay‐fraction dolomite ooze. Based on δ18O equilibria and textural observations, dolomite precipitates from oxygenated and agitated surface brine. The Na‐SO4‐dominated brine contains up to 500 mm dissolved inorganic carbon whereas Mg2+ and Ca2+ concentrations are ca 1 and 0·3 mm , respectively. Precipitation in the subsurface probably is not significant because of the lack of Ca2+ (below 0·01 mm ). Under such highly alkaline conditions, the effect of microbial metabolism on supersaturation by pH and alkalinity increase is negligible. A putative microbial effect could, however, support dolomite nucleation or support crystal growth by overcoming a kinetic barrier. An essential limitation on crystal growth rates imposed by the low Ca2+ and Mg2+ concentrations could favour the thermodynamically more stable carbonate phase (which is dolomite) to precipitate. This mode of unlithified dolomite ooze formation showing δ13C values near to equilibrium with atmospheric CO2 (ca 3‰) contrasts the formation of isotopically light (organically derived), hard‐lithified dolomite layers in the subsurface of some less alkaline environments. Inferred physicochemical controls on dolomite formation under highly alkaline conditions observed in Deep Springs Lake may shed light on conditions that favoured extensive dolomite formation in alkaline Precambrian oceans, as opposed to modern oceans where dolomites only form diagenetically in organic C‐rich sediments.  相似文献   
25.
Particle size and geochemical data have been used to investigate the development of a large cliff-top dune at Rubjerg Knude, located on the western coast of Jutland, Denmark. Textural parameters and geochemical ratios provided useful indicators of the dune sediment provenance and mode of evolution of the dune. The dune sediments themselves showed no significant spatial particle size trends and reflect a number of processes, including grainfall, wind-ripple migration and avalanching (grainflow), which formed a high proportion of the deposits on both the stoss and lee sides of the present dune. Fine grainfall sediments, which have accumulated to form a sandplain in the lee of the dune, show fining and improved sorting with distance, and extend more than 2 km downwind of the dune crest. Comparison of the textural and geochemical data from Rubjerg Knude and other locations on the Jutland coast indicates that, although there is a contribution of sand to the dune from local marine sources, the main source of sand to the cliff-top dune and sand plain sediments has been provided by the wind erosion of the underlying cliffs, which are composed of Weichselian age sandy glaciofluvial and glaciolacustrine deposits. Optically stimulated luminescence dating indicated an apparent age for the sand at the base of 274 ± 14 years. If this date is reliable, it suggests that accumulation of the aeolian sand in this area began within approximately the last 300 years. Map and photographic evidence indicate that the modern high dune only began to form after 1885, apparently associated with an acceleration in the rate of coastal cliff retreat.  相似文献   
26.
A field of uraniferous boulders was discovered in a drift-covered valley west of Dismal Lakes. Glacial geological information was combined with boulder location and trace element till geochemical data to model the dispersal of the boulders; and to predict their likely bedrock source. Uraniferous bedrock was eroded by the last, westward flowing glacial ice to cover the area. The debris was englacially transported and subsequently deposited during subglacial melt-out of ice block(s) stagnating below active ice. The distribution of the boulders forms acrude, westward-opening fan centred on the easternmost boulder and oriented with the last ice-flow direction. The largest uranium values from surface till samples (-2 μm fraction) occur 6.2 km east of the main boulder concentration or 1.5 km east of the first boulder occurrence. The likely bedrock source is 6.0 to 6.6 km east of the main boulder concentration.  相似文献   
27.
28.
Shape is a fundamental property of all objects, including sedimentary particles, but it remains one of the most difficult to characterize and quantify for all but the simplest of shapes. Despite a large literature on the subject, there remains widespread confusion regarding the meaning and relative value of different measures of particle shape. This paper re‐examines the basic concepts of particle shape and suggests a number of new and modified methods which are widely applicable to a range of sedimentological problems; it is shown that the most important aspects of particle form are represented by the I/L ratio (elongation ratio) and S/I ratio (flatness ratio). A combination of these two ratios can be used to classify particles in terms of 25 form classes. A method of obtaining a quantitative measure of particle roundness using simple image analysis software is described, and a new visual roundness comparator is presented. It is recommended that measurements of both roundness and circularity (a proxy measure of sphericity) are made on grain images in three orthogonal orientations and average values calculated for each particle. A further shape property, irregularity, is defined and a classification scheme proposed for use in describing and comparing irregular or branching sedimentary particles such as chert and coral.  相似文献   
29.
X-ray diffraction and oxygen isotopic analyses of outcrop and subsurface samples of siliceous rocks were used to reconstruct thermal and diagenetic histories of the Miocene Monterey Shale near Santa Maria, California. Within many stratigraphic sections soft, porous diatomaceous rocks change gradationally to underlying hard and brittle chert, porcellanite, and siliceous shale; the accompanying silica mineral zones are, in descending stratigraphic order: (1) biogenic silica (opal-A), (2) cristobalitic silica (opal-CT), and (3) microcrystalline quartz. Boundaries between silica mineral zones and stratigraphic horizons are often discordant. Within the opal-CT zone, the d(101)-spacing of opal-CT decreases in a smooth non-linear fashion from about 4 10 Å to 4-04 Å. In the Santa Maria Valley and Bradley oil field areas the thicknesses of the opal-CT zones are greater and the present thermal gradients less than in the adjacent Orcutt oil field. Thin opal-CT zones at shallow maximum burial depths apparently correlate with higher thermal gradients. Using present thermal gradients and reconstructed maximum burial depths from well data in the Santa Maria region, the ranges in temperatures for the top and base of the opal-CT zone are 38–54 °C and 55–110 °C, respectively. The temperature difference between these two boundaries ranges from 17 to 60 °C. In comparison, temperature ranges for these two boundaries computed from oxygen isotopic compositions of opal-CT and quartz, extrapolated experimental quartz-water fractionations, and assuming δO18= 0%o for the isotopic composition of the equilibrating fluid are 18–56 °C and 31–80 °C for the top and base of the opal-CT zone, respectively. The temperature difference between these boundaries is 11–36 °C using this method. Thermal gradients and sedimentation rates strongly influence rates of silica transformations. Reconstructed thermal and diagenetic histories of siliceous rocks of the Monterey Shale at four well sites in the Santa Maria region demonstrate that most silica conversions probably occurred during the last 3–4 Myr in response to accelerated rates of sedimentation (and therefore burial heating) during the Pliocene.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号