全文获取类型
收费全文 | 74319篇 |
免费 | 981篇 |
国内免费 | 643篇 |
专业分类
测绘学 | 2248篇 |
大气科学 | 5716篇 |
地球物理 | 14302篇 |
地质学 | 25360篇 |
海洋学 | 6142篇 |
天文学 | 17583篇 |
综合类 | 231篇 |
自然地理 | 4361篇 |
出版年
2021年 | 527篇 |
2020年 | 563篇 |
2019年 | 611篇 |
2018年 | 1491篇 |
2017年 | 1431篇 |
2016年 | 1876篇 |
2015年 | 1164篇 |
2014年 | 1913篇 |
2013年 | 3766篇 |
2012年 | 1936篇 |
2011年 | 2576篇 |
2010年 | 2304篇 |
2009年 | 3013篇 |
2008年 | 2706篇 |
2007年 | 2666篇 |
2006年 | 2582篇 |
2005年 | 2288篇 |
2004年 | 2168篇 |
2003年 | 2076篇 |
2002年 | 1983篇 |
2001年 | 1800篇 |
2000年 | 1724篇 |
1999年 | 1608篇 |
1998年 | 1524篇 |
1997年 | 1524篇 |
1996年 | 1303篇 |
1995年 | 1239篇 |
1994年 | 1189篇 |
1993年 | 1084篇 |
1992年 | 1008篇 |
1991年 | 977篇 |
1990年 | 1083篇 |
1989年 | 978篇 |
1988年 | 912篇 |
1987年 | 1053篇 |
1986年 | 896篇 |
1985年 | 1177篇 |
1984年 | 1306篇 |
1983年 | 1250篇 |
1982年 | 1210篇 |
1981年 | 1089篇 |
1980年 | 997篇 |
1979年 | 946篇 |
1978年 | 924篇 |
1977年 | 856篇 |
1976年 | 804篇 |
1975年 | 721篇 |
1974年 | 825篇 |
1973年 | 826篇 |
1972年 | 522篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
Stream flow forecast and its inundation simulations prior to the event are an effective and non-structural method of flood damage mitigation. In this paper, a continuous simulation hydrological and hydrodynamic model was developed for stream flow forecast and for spatial inundation simulation in Brahmani–Baitarani river basin, India. The hydrologic modelling approach includes rainfall-run-off modelling, flow routing, calibration and validation of the model with the field discharge data. CARTOSAT Digital Elevation Model of 30 m resolution, land use/land cover derived from the Indian Remote Sensing Satellite (IRS-P6) AWiFS and soil textural data of the study area were used in the modelling to compute topographic and hydraulic parameters. The hydrological model was calibrated with the help of field observed discharge data of 2006 and 2009 and validated with the data of 2008 and 2011. From the results, it is found that computed discharges are very well matching well with the observed discharges. The developed model can provide the stream flow forecast with more than 30 h lead time. Possible flood inundations were simulated using hydrodynamic modelling approach. CARTO Digital Elevation Model of 10 m resolution, landuse and the computed flood hydrographs were used in inundation simulations. 相似文献
222.
Nowadays, different image pansharpening methods are available, which combine the strengths of different satellite images that have different spectral and spatial resolutions. These different image fusion methods, however, add spectral and spatial distortions to the resultant images depending on the required context. Therefore, a careful selection of the fusion method is required. Simultaneously, it is also essential that the fusion technique should be efficient to cope with the large data. In this paper, we investigated how different pansharpening algorithms perform, when applied to very high-resolution WorldView-3 and QuickBird satellite images effectively and efficiently. We compared these 27 pansharpening techniques in terms of quantitative analysis, visual inspection and computational complexity, which has not previously been formally tested. In addition, 12 different image quality metrics available in literature are used for quantitative analysis purpose. 相似文献
223.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers. 相似文献
224.
High-dimensional image data open new possibilities in remote sensing digital image classification, particularly when dealing with classes that are spectrally very similar. The main problem refers to the estimation of a large number of classifier's parameters. One possible solution to this problem consists in reducing the dimensionality of the original data without a significant loss of information. In this letter, a new approach to reduce data dimensionality is proposed. In the proposed methodology, each pixel's curve of spectral response is initially segmented, and the digital numbers (DNs) at each segment are replaced by a smaller number of statistics. In this letter, the proposed statistics are the mean and variance of the segment's DNs, which are supposed to carry information about the segment's position and shape, respectively. Tests were performed by using Airborne Visible/Infrared Imaging Spectrometer hyperspectral image data. The experiments have shown that this methodology is capable of providing very acceptable results, in addition of being computationally efficient 相似文献
225.
Min Zhu Wadge G. Holley R.J. James I.N. Clark P.A. Changgui Wang Woodage M.J. 《Geoscience and Remote Sensing Letters, IEEE》2007,4(3):401-405
Propagation delay due to variable tropospheric water vapor (WV) is one of the most intractable problems for radar interferometry, particularly over mountains. The WV field can be simulated by an atmospheric model, and the difference between the two fields is used to correct the radar interferogram. Here, we report our use of the U.K. Met Office Unified Model in a nested mode to produce high-resolution forecast fields for the 3-km-high Mount Etna volcano. The simulated precipitable-water field is validated against that retrieved from the Medium-Resolution Imaging Spectrometer (MERIS) radiometer on the Envisat satellite, which has a resolution of 300 m. Two case studies, one from winter (November 24, 2004) and one from summer (June 25, 2005), show that the mismatch between the model and the MERIS fields ( rms = 1.1 and 1.6 mm, respectively) is small. One of the main potential sources of error in the models is the timing of the WV field simulation. We show that long-wavelength upper tropospheric troughs of low WV could be identified in both the model output and Meteosat WV imagery for the November 24, 2004 case and used to choose the best time of model output. 相似文献
226.
Kersten P.R. Jansen R.W. Luc K. Ainsworth T.L. 《Geoscience and Remote Sensing Letters, IEEE》2007,4(4):527-531
Synthetic aperture radar (SAR) image formation processing assumes that the scene is stationary, and to focus an object, one coherently sums a large number of independent returns. Any target motion introduces phases that distort and/or translate the target's image. Target motion produces a smear primarily in the azimuth direction of the SAR image. Time-frequency (TF) modeling is used to analyze and correct the residual phase distortions. An interactive focusing algorithm based on TF modeling demonstrates how to correct the phase and to rapidly focus the mover. This is demonstrated on two watercraft observed in a SAR image. Then, two time-frequency representations (TFRs) are applied to estimate the motion parameters of the movers or refocus them or both. The first is the short-time Fourier transform, from which a velocity profile is constructed based on the length of the smear. The second TFR is the time-frequency distribution series, which is a robust derivative of the Wigner-Ville distribution that works well in this SAR environment. The smear is a modulated chirp, from which a velocity profile is plotted and the phase corrections are integrated to focus the movers. The relationship between these two methods is discussed. Both methods show good agreement on the example. 相似文献
227.
C. Jeganathan N.A.S. Hamm S. Mukherjee P.M. Atkinson P.L.N. Raju V.K. Dadhwal 《International Journal of Applied Earth Observation and Geoinformation》2011
Fine spatial resolution (e.g., <300 m) thermal data are needed regularly to characterise the temporal pattern of surface moisture status, water stress, and to forecast agriculture drought and famine. However, current optical sensors do not provide frequent thermal data at a fine spatial resolution. The TsHARP model provides a possibility to generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on the basis of an anticipated inverse linear relationship between the normalised difference vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse spatial resolution. The current study utilised the TsHARP model over a mixed agricultural landscape in the northern part of India. Five variants of the model were analysed, including the original model, for their efficiency. Those five variants were the global model (original); the resolution-adjusted global model; the piecewise regression model; the stratified model; and the local model. The models were first evaluated using Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) thermal data (90 m) aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810 m and 990 m. Although sharpening was undertaken for spatial resolutions from 990 m to 90 m, root mean square error (RMSE) of <2 K could, on average, be achieved only for 990–270 m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, from the global, resolution-adjusted global, piecewise regression, stratification and local models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution-adjusted global model and local model yielded higher accuracy, and were applied to sharpen MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal data were considered as a reference at the respective target spatial resolutions to assess the prediction results from MODIS data. The RMSE of the predicted sharpened image from MODIS using the global, resolution-adjusted global and local models at 250 m were 3.08, 2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened predictions by comparison to other variants. 相似文献
228.
To derive a matched filter for detecting a weak target signal in a hyperspectral image, an estimate of the band-to-band covariance of the target-free background scene is required. We investigate the effects of including some of the target signal in the background scene. Although the covariance is contaminated by the presence of a target signal (there is increased variance in the direction of the target signature), we find that the matched filter is not necessarily affected. In fact, if the variation in plume strength is strictly uncorrelated with the variation in background spectra, the matched filter and its signal-to-clutter ratio (SCR) performance will not be impaired. While there is little a priori reason to expect significant correlation between the plume and the background, there usually is some residual correlation, and this correlation leads to a suppressing effect that limits the SCR obtainable even for strong plumes. These effects are described and quantified analytically, and the crucial role of this correlation is illustrated with some numerical examples using simulated plumes superimposed on real hyperspectral imagery. In one example, we observe an order-of-magnitude loss in SCR for a matched filter based on the contaminated covariance. 相似文献
229.
A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model is initialized with in situ data collected during the May 2004 GreenIce ice camp in the Lincoln Sea (73/spl deg/W; 85/spl deg/N). Our results show that the snow cover is important for the effective scattering surface depth in sea ice and thus for the range measurement, ice freeboard, and ice thickness estimation. 相似文献
230.
This letter describes the extension of signal subspace processing (SSP) to the arena of anomaly detection. In particular, we develop an SSP-based, local anomaly detector that exploits the rich information available in the multiple bands of a hyperspectral (HS) image. This SSP approach is based on signal processing considerations, and its entire formulation reduces to a straightforward (and intuitively pleasing) geometric and algebraic development. We extend the basic SSP concepts to the HS anomaly detection problem, develop an SSP HS anomaly detector, and evaluate this algorithm using multiple HS data files. 相似文献