首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58741篇
  免费   835篇
  国内免费   703篇
测绘学   1905篇
大气科学   4850篇
地球物理   11739篇
地质学   20780篇
海洋学   4547篇
天文学   13155篇
综合类   204篇
自然地理   3099篇
  2021年   396篇
  2020年   427篇
  2019年   502篇
  2018年   1243篇
  2017年   1176篇
  2016年   1609篇
  2015年   981篇
  2014年   1535篇
  2013年   2917篇
  2012年   1639篇
  2011年   2156篇
  2010年   1822篇
  2009年   2426篇
  2008年   2095篇
  2007年   1937篇
  2006年   2015篇
  2005年   1696篇
  2004年   1605篇
  2003年   1563篇
  2002年   1570篇
  2001年   1396篇
  2000年   1395篇
  1999年   1214篇
  1998年   1141篇
  1997年   1184篇
  1996年   1070篇
  1995年   1001篇
  1994年   922篇
  1993年   795篇
  1992年   752篇
  1991年   769篇
  1990年   790篇
  1989年   740篇
  1988年   695篇
  1987年   838篇
  1986年   750篇
  1985年   861篇
  1984年   974篇
  1983年   958篇
  1982年   903篇
  1981年   817篇
  1980年   762篇
  1979年   710篇
  1978年   713篇
  1977年   651篇
  1976年   583篇
  1975年   577篇
  1974年   644篇
  1973年   651篇
  1972年   417篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Izvestiya, Atmospheric and Oceanic Physics - In this paper we describe a technique for measuring the tropospheric wind profile using a 35-GHz Doppler profiler. The parameters of the equipment and...  相似文献   
962.
Oceanology - The paper presents the results of an analysis of the main pollutants (heavy metals, pesticides, detergents, hydrocarbons) in water, suspended particulate matter, and bottom sediments,...  相似文献   
963.
This study describes an automatic berthing system with mooring lines. It is designed to be berthed by using mooring device on the upper deck of a ship. It is to berth once maintaining parallel with the quay by controlling both forward and aft breast lines. Berthing method is used through length adjustment of mooring lines connected between ship and quay by controlling the angular velocity and the torque of hydraulic motor in mooring device. The study is conducted under three changing conditions of draft, such as even-keel, rise of the gravity center and trim to stern. Variables affecting berthing stability are determined based on the control performance of each condition. Bond graphs method is used to model the system. Controller is designed as PID control method of reference-model algorithm. The control program is composed of synchronous control system based on the equations derived with the numerical analysis. The tank test is conducted to verify the usefulness of the control program.  相似文献   
964.
In conjunction with the GLOBEC (Global Ocean Ecosystems Dynamics) program, measurements of moored currents, temperature and salinity were made during 1994–1999 at locations in 76 m of water along the southern flank of Georges Bank and at the Northeastern Peak. The measurements concentrate on the biologically crucial winter and spring periods, and coverage during the fall is usually poorer.Current time series were completely dominated by the semidiurnal M2 tidal component, while other tidal species (including the diurnal K1 component) were also important. There was a substantial wind-driven component of the flow, which was linked, especially during the summer, to regional–scale response patterns. The current response at the Northeast Peak was especially strong in the 3–4 days period band, and this response is shown to be related to an amplifying topographic wave propagating eastward along the northern flank. Monthly mean flows on the southern flank are southwestward throughout the year, but strongest in the summertime. The observed tendency for summertime maximum along-bank flow to occur at depth is rationalized in terms of density gradients associated with a near-surface freshwater tongue wrapping around the Bank.Temperature and salinity time series demonstrate the presence, altogether about 25% of the time, of a number of intruding water masses. These intrusions could last anywhere from a couple days up to about a month. The sources of these intrusions can be broadly classified as the Scotian Shelf (especially during the winter), the Western Gulf of Maine (especially during the summer), and the deeper ocean south of Georges Bank (throughout the year). On longer time scales, the temperature variability is dominated by seasonal temperature changes. During the spring and summer, these changes are balanced by local heating or cooling, but wintertime cooling involves advective lateral transports as well. Salinity variations have weak, if any, seasonal variability, but are dominated by interannual changes that are related to regional- or basin-scale changes.All considered, Georges Bank temperature and salinity characteristics are found to be highly dependent on the surrounding waters, but many questions remain, especially in terms of whether intrusive events leave a sustained impact on Bank waters.  相似文献   
965.
Molecular organic biomarkers together with trace element composition were investigated in sediments east of Barrow Canyon in the western Arctic Ocean to determine sources and recycling of organic carbon in a continuum from the shelf to the basin. Algal biomarkers (polyunsaturated and short-chain saturated fatty acids, 24-methylcholesta-5,24(28)-dien-3β-ol, dinosterol) highlight the substantial contribution of organic matter from water column and sea-ice primary productivity in shelf environments, while redox markers such as acid volatile sulfide (AVS), Mn, and Re indicate intense metabolism of this material leading to sediment anoxia. Shelf sediments also receive considerable inputs from terrestrial organic carbon, with biomarker composition suggesting the presence of multiple pools of terrestrial organic matter segregated by age/lability or hydrodynamic sorting. Sedimentary metabolism was not as intense in slope sediments as on the shelf; however, sufficient labile organic matter is present to create suboxic and anoxic conditions, at least intermittently, as organic matter is focused towards the slope. Basin sediments also showed evidence for episodic delivery of labile organic carbon inputs despite the strong physical controls of water depth and sea-ice cover. Principal components analysis of the lipid biomarker data was used to estimate fractions of preserved recalcitrant (of terrestrial origin) and labile (of marine origin) organic matter in the sediments, with ranges of 12–79%, 14–45%, and 37–66% found for the shelf, slope, and basin cores, respectively. On average, the relative preserved terrestrial organic matter in basin sediments was 56%, suggesting exchange of organic carbon between nearshore and basin environments in the western Arctic.  相似文献   
966.
Dissolved aluminium and the silicon cycle in the Arctic Ocean   总被引:1,自引:0,他引:1  
Concentrations of dissolved (0.2 µm filtered) aluminium (Al) have been determined for the first time in the Eurasian part of the Arctic Ocean over the entire water column during expedition ARK XXII/2 aboard R.V. Polarstern (2007). An unprecedented number of 666 samples was analysed for 44 stations along 5 ocean transects. Dissolved Al in surface layer water (SLW) was very low, close to 1 nM, with lowest SLW concentrations towards the Canadian part of the Arctic Ocean and higher values adjacent to and in the shelf seas. The low SLW concentrations indicate no or little influence from aeolian dust input. Dissolved Al showed a nutrient-type increase with depth up to 28 nM, but large differences existed between the different deep Arctic basins. The differences in concentrations of Al between water masses and basins could largely be related to the different origins of the water masses. In the SLW and intermediate water layers, Atlantic and Pacific inflows were of importance. Deep shelf convection appeared to influence the Al distribution in the deep Eurasian Basin. The Al distribution of the deep Makarov Basin provides evidence for Eurasian Basin water inflow into the deep Makarov Basin. A strong correlation between Al and Silicon (Si) was observed in all basins. This correlation and the nutrient-like profile indicate a strong biological influence on the cycling and distribution of Al. The biological influence can be direct by the incorporation of Al in biogenic silica, indirect by preferential scavenging of Al onto biogenic siliceous particles, or by a combination of both processes. From the slope of the overall Al–Si relationship in the intermediate water layer (AIDW; ~ 200–2000 m depth), an Al/Si ratio of 2.2 atoms Al per 1000 atoms Si was derived. This ratio is consistent with the range of previously reported Al/Si uptake ratio in biogenic opal frustules of diatoms. In the deepest waters (>2000 m depth) a steeper slope of the Al–Si relationship of 7.4 to 13 atoms Al per 1000 atoms Si likely results from entrainment of cold shelf water into the deep basins, carrying the signal of dissolution of terrigenous particles with a much higher Al:Si ratio of crustal abundance. Only a small enrichment with such crustal Al and Si component may readily account for the higher Al:Si slope in the deepest waters.  相似文献   
967.
A new version of the Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS), climate model (CM) has been developed using an ocean general circulation model instead of the statistical-dynamical ocean model applied in the previous version. The spatial resolution of the new ocean model is 3° in latitude and 5° in longitude, with 25 unevenly spaced vertical levels. In the previous version of the oceanic model, as in the atmospheric model, the horizontal resolution was 4.5° in latitude and 6° in longitude, with four vertical levels (the upper quasi-homogeneous layer, seasonal thermocline, abyssal ocean, and bottom friction layer). There is no correction for the heat and momentum fluxes between the atmosphere and ocean in the new version of the IAP RAS CM. Numerical experiments with the IAP RAS CM have been performed under current initial and boundary conditions, as well as with an increasing concentration of atmospheric carbon dioxide. The main simulated atmospheric and oceanic fields agree quite well with observational data. The new version’s equilibrium temperature sensitivity to atmospheric CO2 doubling was found to be 2.9 K. This value lies in the mid-range of estimates (2–4.5 K) obtained from simulations with state-of-the-art models of different complexities.  相似文献   
968.
Based on the results of analyzing the characteristics of currents and temperature measured in the water space of the Mamala Bay (the Island of Oahu, Hawaii), we investigate the main properties of the field of short-period internal waves, which is very complex. We focus on analyzing the spectral characteristics and orbit parameters for waves with a period of 20 minutes. The results of investigations reveal two types of short-period internal waves for this area: intense and fast waves propagating predominantly toward the ocean and weaker and slower waves propagating mainly toward the coast. Suppositions are made on how these waves form: the strong and fast waves are likely to be caused by the decay of locally generated internal tides near the shelf edge, while the weak and slow and very short waves seem to result from the specific interaction between the pycnocline and strong tidal currents over a steep slope.  相似文献   
969.
The experimental investigation of the run-up of periodic internal waves in a two-layer fluid on the coastal slope is performed in an open hydrochannel at the Physical Department of the Lomonosov Moscow State University. The waves are produced by a wave generator. We study the transformation of waves, the vertical structure of the field of velocities of mass transfer, and the behavior of the parameters of internal waves propagating over the sloping bottom. It is shown that the run-up and breaking of internal waves are accompanied by periodic emissions of portions of the heavier fluid from the bottom layer upward along the slope. The Stokes drift velocity changes its sign as a function of depth. Moreover, both the wave length (the horizontal distance between the neighboring crests) and the height of waves over the sloping bottom (the elevation of the crest over the slope along the vertical) decrease as the wave approaches the coast.  相似文献   
970.
In previous publications, the relationship between the Sirte Abyssal Plain as foreland and the Mediterranean Ridge as accretionary complex was considered to be simple: the foreland is undeformed, the accretionary complex consumes the foreland, the Messinian evaporites control the internal structure of the growing complex. The compilation of our own and published data results in a more complex tectonic pattern and a new geodynamic interpretation. The Sirte Abyssal Plain is imprinted by extensional tectonics which originated independently from and prior to the approaching process of accretion. The structural setting of the pre-Messinian and Messinian Sirte Abyssal Plain is responsible for the highly variable thickness of Messinian evaporites. The foreland setting in the Sirte Abyssal Plain also controls the internal structure of the Mediterranean Ridge, at least between the deformation front and Bannock Basin, following sediment deformation within the accretionary wedge with a dominating inherited SW-NE orientation. The taper angle of the post-Messinian Mediterranean Ridge is unusually small compared with other accretionary wedges. In the studied area, within a distance of about 45 km from the deformation front, there is no appreciable dip in the décollement. Therefore, the slope of the outer 45 km of the Mediterranean Ridge is considered to be caused only by gravitational spreading of Messinian evaporites deposited on the slope of pre-Messinian accretionary wedge. As a consequence, the Mediterranean Ridge underlying such slope is interpreted to belong to the foreland. The allochthonous evaporites overlie autochthonous evaporites of the Sirte Abyssal Plain. The NE-dipping décollement (and thus of the true tectonically driven deformation front) is expected to initiate at about the present position of Bannock Basin. The Sirte Abyssal Plain, the adjacent Cyrene Seamount and neighbouring seafloor relief on the African continental margin are considered to be the product of tectonic segmentation of the continental crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号