全文获取类型
收费全文 | 32035篇 |
免费 | 424篇 |
国内免费 | 373篇 |
专业分类
测绘学 | 1221篇 |
大气科学 | 2437篇 |
地球物理 | 6203篇 |
地质学 | 11298篇 |
海洋学 | 2484篇 |
天文学 | 7638篇 |
综合类 | 143篇 |
自然地理 | 1408篇 |
出版年
2021年 | 279篇 |
2020年 | 276篇 |
2019年 | 324篇 |
2018年 | 816篇 |
2017年 | 778篇 |
2016年 | 1019篇 |
2015年 | 590篇 |
2014年 | 957篇 |
2013年 | 1687篇 |
2012年 | 1037篇 |
2011年 | 1277篇 |
2010年 | 1075篇 |
2009年 | 1386篇 |
2008年 | 1203篇 |
2007年 | 1159篇 |
2006年 | 1177篇 |
2005年 | 978篇 |
2004年 | 869篇 |
2003年 | 868篇 |
2002年 | 857篇 |
2001年 | 770篇 |
2000年 | 743篇 |
1999年 | 672篇 |
1998年 | 617篇 |
1997年 | 629篇 |
1996年 | 568篇 |
1995年 | 534篇 |
1994年 | 506篇 |
1993年 | 428篇 |
1992年 | 384篇 |
1991年 | 411篇 |
1990年 | 411篇 |
1989年 | 387篇 |
1988年 | 359篇 |
1987年 | 432篇 |
1986年 | 361篇 |
1985年 | 444篇 |
1984年 | 478篇 |
1983年 | 462篇 |
1982年 | 444篇 |
1981年 | 356篇 |
1980年 | 360篇 |
1979年 | 311篇 |
1978年 | 306篇 |
1977年 | 294篇 |
1976年 | 258篇 |
1975年 | 254篇 |
1974年 | 281篇 |
1973年 | 305篇 |
1972年 | 194篇 |
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
971.
D.M.CHATE R.T.WAGHMARE C.K.JENA V.GOPALAKRISHNAN P.MURUGAVEL Sachin D.GHUDE Rachana KULKARNI P.C.S.DEVARA 《大气科学进展》2018,35(2):218-223
The first measurements of cloud condensation nuclei(CCN) at five supersaturations were carried out onboard the research vessel "Sagar Kanya"(cruise SK-296) from the south to the head-bay of the Bay of Bengal as part of the Continental Tropical Convergence Zone(CTCZ) Project during the Indian summer monsoon of 2012. In this paper, we assess the diurnal variation in CCN distributions at supersaturations from 0.2% to 1%(in steps of 0.2%) and the power-law fit at supersaturation of 1%.The diurnal pattern shows peaks in CCN concentration(NCCN) at supersaturations from 0.2% to 1% between 0600 and 0700 LST(local standard time, UTC+0530), with relatively low concentrations between 1200 and 1400 LST, followed by a peak at around 1800 LST. The power-law fit for the CCN distribution at different supersaturation levels relates the empirical exponent(k) of supersaturation(%) and the NCCNat a supersaturation of 1%. The NCCNat a supersaturation of 0.4% is observed to vary from 702 cm~(-3) to 1289 cm~(-3), with a mean of 961 ± 161 cm~(-3)(95% confidence interval), representing the CCN activity of marine air masses. Whereas, the mean NCCNof 1628 ± 193 cm~(-3) at a supersaturation of 1% is higher than anticipated for the marine background. When the number of CCN spectra is 1293, the value of k is 0.57 ± 0.03(99% confidence interval)and its probability distribution shows cumulative counts significant at k ≈ 0.55 ± 0.25. The results are found to be better at representing the features of the marine environment(103 cm~(-3) and k ≈ 0.5) and useful for validating CCN closure studies for Indian sea regions. 相似文献
972.
973.
The present study is carried out to examine the performance of a regional atmospheric model in forecasting tropical cyclones
over the Bay of Bengal and its sensitivity to horizontal resolution. Two cyclones, which formed over the Bay of Bengal during
the years 1995 and 1997, are simulated using a regional weather prediction model with two horizontal resolutions of 165 km
and 55 km. The model is found to perform reasonably well towards simulation of the storms. The structure, intensity and track
of the cyclones are found to be better simulated by finer resolution of the model as compared to the coarse resolution. Rainfall
amount and its distribution are also found to be sensitive to the model horizontal resolution. Other important fields, viz.,
vertical velocity, horizontal divergence and horizontal moisture flux are also found to be sensitive to model horizontal resolution
and are better simulated by the model with finer horizontal grids. 相似文献
974.
In recent decades, the high population growth has increased the demand for agricultural lands and products. Groundwater offers reliability and flexibility in access to water for irrigation purposes, especially in arid and semi-arid areas, such as Amol-Babol Plain, Iran. However, the quality and quantity of groundwater may not be suitable for irrigation purposes in all areas due to urbanizations, and intensive agricultural and industrial activities. Groundwater suitability zoning for irrigation purposes could be useful to improve water resources and land use planning, mostly in areas with water scarcity. Therefore, a GIS-based indices method is proposed to assess suitable zones for agricultural activities, integrating the irrigation water quality (IWQ) index and hydrogeological factors. IWQ index was utilized to assess groundwater quality based on salinity hazard, infiltration hazard, specific ions, and trace elements hazards, and miscellaneous effects such as pH, bicarbonate, and nitrate. The potential of the aquifer for irrigation water abstraction was investigated using hydrogeological surveys such as slope angle of the plain, hydraulic conductivity, and aquifer thickness. The groundwater suitability index classified most of the study area (more than 90 %) as “excellent” or “good” suitability zones for irrigation purposes. A limited area of around 5.6 % of the total area has moderate suitability for irrigation purposes due to the Caspian Seawater intrusion and the presence of fossil saline water. The proposed methodology provides useful information in order to allow irrigation management to prevent water and soil deterioration. 相似文献
975.
Two piston cores, collected from the western Ulleung Basin of the East/Japan Sea, were used to investigate the Late Quaternary tephrostratigraphy, lithology, and mineralogy of the sediments, as well as the elemental composition of both sediments and interstitial water, and their paleo-environmental implications. The cores show two lapilli tephra layers and one rhyolitic ash layer at the boundaries between sedimentary lithofacies units I, II, and III. These layers can be correlated with the well-known Ulleung-Oki (ca. 9.3 ka; boundary of units I/II), Ulleung-Yamato (ca. 25–33 ka), and Aira-Tanzawa (ca. 25.1 ka; boundary of units II/III) layers, respectively. These data suggest that the cores cover the period from the middle stage of marine isotope stage (MIS) 3 to the Holocene. In each core, a so-called dark laminated mud (DLM) layer in unit II commonly has high contents of Si and Al, suggesting that the DLM layer generally contains significant amounts of fine-grained silicates and/or aluminosilicates. In addition, these DLM layers are enriched in Fe relative to Mn, iron being predominantly bound in framboidal pyrite. The size distribution of pyrite in the DLM layers suggests that these have formed under anoxic (euxinic) conditions at times of reduced water circulation in the basin during sea-level lowstand (euxinic environment). The C/N ratios [5–12] suggest that sedimentary organic matter in the cores is predominantly of marine origin. Total organic carbon (TOC) contents increased shortly before Termination I. This could have been caused by an increased flux of marine organic matter in association with sea-level rise. The C and S values of units II and III (Late Pleistocene sediments; C: <2.0%; S: 0.5–2.1%) suggest a more euxinic environment than that of unit I (Holocene sediments; C: 1.0–3.5%; S: <1.0%). Concentrations of SO42– in the interstitial water decrease with increasing burial depth, whereas CH4 concentrations show the reverse trend. Therefore, it seems that sulfate reduction, probably related to microbial activity, predominates in the upper core sections (<5 m), shifting to methanogenesis in the lower core sections. 相似文献
976.
Salt affected soils occupy significant areas in western and central India manifested by the arid and semiarid climate, sandy/clayey soil texture, absence of natural drainage, and inadequate infrastructure and irrigation development. These soils are productive following reclamation and appropriate management. The National Remote Sensing Agency, Hyderabad (India) published state-wise maps of salt affected soils in India on 1:250,000 scale using a legend that includes physiography, soil characteristics, and the aerial extent of the mapping units. In the analogue form, voluminous data contained in such maps were difficult to handle by users of varied backgrounds. An attempt was made to prepare a computerized database of salt affected soils for easy access, retrieval, and manipulation of spatial and attribute data useful for management of salt affected soils. The salt affected soils maps were prepared, for Rajasthan, Gujarat, Madhya Pradesh, and Maharashtra states, overlaying digitized layers of SAS polygons and the Survey of India basemap using the ILWIS (Integrated Land and Water Information System) software. GIS was used to prepare a composite (master) database of western and central India that showed the extent and distribution of salt affected soils. A relational database was prepared combining the digitized polygons with soil characteristics such as nature and degree of salinity (presence of higher concentration of neutral salts and neutral soil reaction), sodicity (presence of higher concentration of basic salts and alkaline reaction) and ground coverage. The regional and zonal databases of salt affected soils were prepared at a suitable scale overlaying agro-climatic regions agro-climatic zones. Spatial relation of salt affected soils with physiography, climate, geology, and agro-eco-sub-regions were evaluated employing map calculations in GIS. Saline soils were prevalent in Gujarat, and Rajasthan while sodic soils were dominant in Maharashtra and Madhya Pradesh. These were distributed primarily in the arid (B) plain of Rajasthan, alluvial (A) and coastal (D) plains of Gujarat, and peninsular plain (F) of Maharashtra and Madhya Pradesh. It occupied 2,596,942 ha (78%) in the western (Rajasthan and Gujarat) and 733,608 ha (22%) in the central (Madhya Pradesh and Maharashtra) regions. The SAS occupied 3.3 million ha in the western and central region constituting 50% of the total salt affected soils in India. The saline and sodic soils occupied 2,069,285 ha (62%) and 1,261,266 ha (38%), respectively. 相似文献
977.
Abstract The adsorption of lead and zinc ions on bed sediments of the River Kali in western Uttar Pradesh, India, has been studied. The role of the coarser sediment fraction (210–250 μm) in controlling metal pollution has been elucidated and compared to those of the clay and silt fractions. The parameters controlling metal uptake, viz., solution pH, sediment dose, contact time, and particle size have been evaluated. The optimum contact time needed to reach equilibrium is of the order of 45 min for both the metal ions. The extent of adsorption increases with an increase of pH. Furthermore, the adsorption of the metal ions increases with increasing adsorbent doses and decreases with adsorbent particle size. The two geochemical phases of iron and manganese oxide act as the active support material for the adsorption of the metal ions. 相似文献
978.
Borehole data reveals that during Late Quaternary, the Ganga river was non-existent in its present location near Varanasi.
Instead, it was flowing further south towards peripheral craton. Himalayan derived grey micaceous sands were being carried
by southward flowing rivers beyond the present day water divide of Ganga and mixed with pink arkosic sand brought by northward
flowing peninsular rivers. Subsequently, the Ganga shifted to its present position and got incised. Near Varanasi, the Ganga
river is flowing along a NW-SE tectonic lineament. The migration of Ganga river is believed to have been in response to basin
expansion caused due to Himalayan tectonics during Middle Pleistocene times.
Multi-storied sand bodies generated as a result of channel migration provide excellent aquifers confined by a thick zone of
muddy sediments near the surface. Good quality potable water is available at various levels below about 70 m depth in sandy
aquifers. Craton derived gravelly coarse-to-medium grained sand forms the main aquifer zones of tens of meter thickness with
enormous yield. In contrast, the shallow aquifers made up of recycled interfluve silt and sandy silt occur under unconfined
conditions and show water-level fluctuation of a few meters during pre-and post-monsoon periods. 相似文献
979.
980.
More theoretical analysis is needed to investigate why a dual‐domain model often works better than the classical advection‐dispersion (AD) model in reproducing observed breakthrough curves for relatively homogeneous porous media, which do not contain distinct dual domains. Pore‐scale numerical experiments presented here reveal that hydrodynamics create preferential flow paths that occupy a small part of the domain but where most of the flow takes place. This creates a flow‐dependent configuration, where the total domain consists of a mobile and an immobile domain. Mass transfer limitations may result in nonequilibrium, or significant differences in concentration, between the apparent mobile and immobile zones. When the advection timescale is smaller than the diffusion timescale, the dual‐domain mass transfer (DDMT) model better captures the tailing in the breakthrough curve. Moreover, the model parameters (mobile porosity, mean solute velocity, dispersivity, and mass transfer coefficient) demonstrate nonlinear dependency on mean fluid velocity. The studied case also shows that when the Peclet number, Pe, is large enough, the mobile porosity approaches a constant, and the mass transfer coefficient can be approximated as proportional to mean fluid velocity. Based on detailed analysis at the pore scale, this paper provides a physical explanation why these model parameters vary in certain ways with Pe. In addition, to improve prediction in practical applications, we recommend conducting experiments for parameterization of the DDMT model at a velocity close to that of the relevant field sites, or over a range of velocities that may allow a better parameterization. 相似文献