首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55079篇
  免费   594篇
  国内免费   1278篇
测绘学   2498篇
大气科学   4342篇
地球物理   10592篇
地质学   22058篇
海洋学   3468篇
天文学   9104篇
综合类   2284篇
自然地理   2605篇
  2021年   279篇
  2020年   277篇
  2019年   324篇
  2018年   5349篇
  2017年   4596篇
  2016年   3503篇
  2015年   812篇
  2014年   1031篇
  2013年   1701篇
  2012年   1953篇
  2011年   3816篇
  2010年   2970篇
  2009年   3560篇
  2008年   2991篇
  2007年   3405篇
  2006年   1228篇
  2005年   1170篇
  2004年   1252篇
  2003年   1253篇
  2002年   1093篇
  2001年   816篇
  2000年   793篇
  1999年   685篇
  1998年   638篇
  1997年   629篇
  1996年   568篇
  1995年   534篇
  1994年   506篇
  1993年   428篇
  1992年   384篇
  1991年   411篇
  1990年   411篇
  1989年   387篇
  1988年   359篇
  1987年   432篇
  1986年   361篇
  1985年   444篇
  1984年   478篇
  1983年   462篇
  1982年   444篇
  1981年   375篇
  1980年   377篇
  1979年   311篇
  1978年   306篇
  1977年   294篇
  1976年   264篇
  1975年   254篇
  1974年   281篇
  1973年   305篇
  1972年   194篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
541.
The chemical and trace-element features of the Late Cretaceous and Early Paleogene ignimbrite complexes of East Sikhote Alin are discussed. The Turonian-Campanian volcanic rocks of the Primorsky Complex compose linear structure of the Eastern Sikhote Alin volcanic belt. They are represented by crystalrich rhyolitic, rhyodacitic, and dacitic S-type plateau ignimbrites produced by fissure eruptions of acid magmas. The Maastrichtian-Paleocene volcanic rocks occur as isolated volcanic depression and caldera structures, which have no structural and spatial relations with the volcanic belt. This period is characterized by bimodal volcanism. The Samarginsky, Dorofeevsky, and Severyansky volcanic complexes are made up of basalt-andesite-dacite lavas and pyroclastic rocks, while the Levosobolevsky and Siyanovsky complexes are comprised of rhyolitic and dacitic tuffs and ignimbrites. Petrogeochemically, the felsic volcanic rocks are close to the S-type plateau ignimbrites of the Primorsky Complex. The Paleocene-Early Eocene silicic volcanics of the Bogopolsky Complex are represented by S- and A-type dacitic and rhyolitic tuffs and ignimbrites filling collapsed calderas. The eruption of A-type ferroan hyaloignimbrites occurred at the final stage of the Paleogene volcanism (Bogopolsky Complex). The magmatic rocks show well expressed mineralogical and geochemical evidence for the interaction between the crustal magmas and enriched sublithospheric mantle. It was shown that the revealed differences in the mineralogical and geochemical composition of the ignimbrite complexes are indicative of a change in the geodynamic regime of the Asian active continental margin at the Mesozoic-Cenozoic transition.  相似文献   
542.
543.
Late Permian-Early Triassic (P2-T1) volcanic rocks distributed on the eastern side of ocean-ridge and oceanic-island basalts in the Nan-Uttaradit zone were analyzed from aspects of petrographic characteristics, rock assemblage, REE, trace elements, geotectonic setting, etc., indicating that those volcanic rocks possess the characteristic features of island-arc volcanic rocks. The volcanic rock assemblage is basalt-basaltic andesite-andesite. The volcanic rocks are sub-alkaline, dominated by calc-alkaline series, with tholeiite series coming next. The chemical composition of the volcanic rocks is characterized by low TiO2 and K2O and high Al2O3 and Na2O. Their REE patterns are of the flat, weak LREE-enrichment right-inclined type. The trace elements are characterized by the enrichment of large cation elements such as K, Rb and Ba, common enrichment of U and Th, and depletion of Nb, Ta, Zr and Hf. The petrochemical plot falls within the field of volcanic rocks, in consistency with the plot of island-arc volcanic rocks in the Jinsha River zone of China. This island-arc volcanic zone, together with the ocean-ridge/oceanic island type volcanic rocks in the Nan-Uttaradit zone, constitutes the ocean-ridge volcanic rock-island-arc magmatic rock zones which are distributed in pairs, indicating that the oceanic crust of the Nan-Uttaradit zone once was of eastward subduction. This work is of great significance in exploring the evolution of paleo-Tethys in the Nan-Uttaradit zone.  相似文献   
544.
Early in July, 1928, Mr. H. K. Lin, the noted lawyer of Peking, approached Dr. W. H. Wong, director of the Geological Survey of China, for solution of some water supply problems, recently arisen in a tract of hilly land (of which Mr. Lin is the owner) in the eastern foot of the Mont Miao FengShan  相似文献   
545.
546.
547.
Eight samples of the beryl variety aquamarine were selected from four pegmatites in the Governador Valadares and Araçuaí regions in northeastern Minas Gerais State, Brazil. These samples were fully characterized by chemical analysis, infrared and UV-visible spectroscopy, thermal analyses, and high-temperature X-ray diffraction (from room temperature up to 800 °C). Several physical and chemical properties of beryl were found to depend on the amount of water and ions residing in the structural channels. The thermal expansion coefficients from room temperature to about 800 °C are temperature-independent, with αa ? ?3.2 × 10?6 ° C?1 and αc ? ?8.7 × 10?6 ° C?1. The contraction of both a and c unit-cell parameters with increasing temperature and the shift of the infrared band centered at about 1200 cm?1 were tentatively ascribed to interactions between channel water and the silicate rings.The color of beryl seems to be dictated by the relative proportions of Fe3+ in the octahedralsites and of fe2+ in the channels. Thus, deep-blue samples have little Fe3+, whereas greener samples have more Fe3+ or less channel Fe2+.  相似文献   
548.
549.
Two large-scale “in situ” demonstration experiments and their instrumentation are described. The first test (FEBEX Experiment) involves the hydration of a compacted bentonite barrier under the combined effect of an inner source of heat and an outer water flow from the confining saturated granite rock. In the second case, the progressive de-saturation of Opalinus clay induced by maintained ventilation of an unlined tunnel is analyzed. The paper shows the performance of different sensors (capacitive cells, psychrometers, TDR’s) and a comparison of fill behaviour with modelling results. The long term performance of some instruments could also be evaluated specially in the case of FEBEX test. Capacitive sensors provide relative humidity data during long transient periods characterised by very large variations of suction within the bentonite.  相似文献   
550.
The series of four different, steeply inclined thrusts which sharply sever the youthful autochthonous Cenozoic sedimentary zone, including the Siwalik, from the mature old Lesser Himalayan subprovince is collectively known as the Main Boundary Thrust (MBT). In the proximity of this trust in northwestern and eastern sectors, the parautochtonous Lesser Himalayan sedimentary formations are pushed up and their narrow frontal parts split into imbricate sheets with attendant repetition and inversion of lithostratigraphic units. The superficially steeper thrust plane seems to flatten out at depth. The MBT is tectonically and seismically very active at the present time.The Main Central Thrust (MCT), inclined 30° to 45° northwards, constitutes the real boundary between the Lesser and Great Himalaya. Marking an abrubt change in the style and orientation of structures and in the grade of metamorphism from lower amphibolitefacies of the Lesser Himalayan to higher metamorphic facies of the Great Himalayan, the redefined Main Central Thrust lies at a higher level as that originally recognized by A. Heim and A. Gansser. They had recognized this thrust as the contact of the mesozonal metamorphics against the underlying sedimentaries or epimetamorphics. It has now been redesignated as the Munsiari Thrust in Kumaun. It extends northwest in Himachal as the Jutogh Thrust and farther in Kashmir as the Panjal Thrust. In the eastern Himalaya the equivalents of the Munsiari Thrust are known as the Paro Thrust and the Bomdila Thrust. The upper thrust surface in Nepal is recognized as the Main Central Thrust by French and Japanese workers. The easterly extension of the MCT is known as the Khumbu Thrust in eastern Nepal, the Darjeeling Thrust in the Darjeeling-Sikkim region, the Thimpu Thrust in Bhutan and the Sela Thrust in western Arunachal. Significantly, hot springs occur in close proximity to this thrust in Kumaun, Nepal and Bhutan. There are reasons to believe that movement is taking place along the MCT, although seismically it is less active than the MBT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号