首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181072篇
  免费   20131篇
  国内免费   43179篇
测绘学   6295篇
大气科学   31634篇
地球物理   41817篇
地质学   85220篇
海洋学   28985篇
天文学   34918篇
综合类   4387篇
自然地理   11126篇
  2022年   1097篇
  2021年   1946篇
  2020年   3351篇
  2019年   6930篇
  2018年   9122篇
  2017年   8605篇
  2016年   9523篇
  2015年   7008篇
  2014年   8215篇
  2013年   12542篇
  2012年   8785篇
  2011年   9781篇
  2010年   9305篇
  2009年   10273篇
  2008年   8761篇
  2007年   8634篇
  2006年   7872篇
  2005年   6740篇
  2004年   6971篇
  2003年   6511篇
  2002年   6061篇
  2001年   5371篇
  2000年   4902篇
  1999年   4467篇
  1998年   4549篇
  1997年   4530篇
  1996年   3861篇
  1995年   3619篇
  1994年   3307篇
  1993年   3104篇
  1992年   2789篇
  1991年   2584篇
  1990年   2607篇
  1989年   2297篇
  1988年   2115篇
  1987年   2285篇
  1986年   2025篇
  1985年   2378篇
  1984年   2653篇
  1983年   2453篇
  1982年   2382篇
  1981年   2151篇
  1980年   1904篇
  1979年   1815篇
  1978年   1724篇
  1977年   1580篇
  1976年   1485篇
  1975年   1397篇
  1974年   1464篇
  1973年   1498篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
791.
 The yearly nutrient supply from land and atmosphere to the study area in SW Kattegat is 10 900 tons of N and 365 tons of P. This is only few percent of the supply from adjacent marine areas, as the yearly transport through the study area is 218 000 tons of N and 18 250 tons of P. Yearly net deposition makes up 1340 tons of N (on average 2.5 g m–2 yr–1) and 477 ton of P (on average 0.9 g m–2 yr–1). Shallow-water parts of the study area have no net deposition because of frequent (>35% of the year) resuspension. Resuspension frequency in deep water is <1% of the year. Resuspension rates, as averages for the study area, are 10–17 times higher than net deposition rates. Because of resuspension, shallow-water sediments are coarse lag deposits with small amounts of organic matter (1.1%) and nutrients (0.04% N and 0.02% P). Deep-water sediments, in contrast, are fine grained with high levels of organic matter (11.7%) and nutrients (0.43% N and 0.15% P). Laboratory studies showed that resuspension changes the diffusive sediment water fluxes of nutrients, oxygen consumption, and penetration into the sediment. Fluxes of dissolved reactive phosphate from sediment to water after resuspension were negative in organic-rich sediments (13.2% organic matter) with low porosity (56) and close to zero in coarse sediments with a low organic matter content (2.3%) and high porosity (73). Fluxes of inorganic N after resuspension were reduced to 70% and 0–20% in relation to the rates before resuspension, respectively. Received: 10 July 1995 · Accepted: 19 January 1996  相似文献   
792.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   
793.
The three-dimensional geometry of the heliospheric current sheet seen from fixed points in interplanetary space is constructed for idealized (sinusoidal) magnetic neutral lines (equators) and for an observed magnetic equator on the basis of the “kinematic method” developed by Hakamada and Akasofu (1982). The cross-sections of the wavy current sheet at distances 1, 2 and 5 a.u. are also constructed for the idealized magnetic neutral lines.  相似文献   
794.
795.
796.
797.
The island of Lampedusa lies on the northern edge of the African continental shelf, but during some Quaternary marine lowstands it was joined to the African continent. The study and dating of the aeolian, alluvial, detrital sediments, calcareous crusts and speleothems have established that the climatic–environmental variations recorded on the island can be related chronologically to those known for northern Libya, Tunisia and the Italian peninsula. During the Last Glacial Maximum, phases of Saharan dust accumulation on Lampedusa occurred, and were coeval with dust accumulation in crater lakes and on high mountains in central‐southern Italy, and with phases of glacial advance in the Apennines and in the Alps. During the late Holocene, accumulation of Saharan dust on Lampedusa occurred but there was little accumulation of dust on the northern side of the Mediterranean Sea. With the new data from Lampedusa, it is possible to envisage two different scenarios of atmospheric circulation relating to the Last Glacial Maximum and to the late Holocene. During the Last Glacial Maximum, southerly atmospheric circulation brought rainfall to the southern slopes of the Alps and to the Apennines. During the late Holocene, a prevalent westerly atmospheric circulation became established in the northern Mediterranean. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
798.
799.
Radiocaesium isotopes, discharged into the North-east Irish Sea from the Sellafield (formerly Windscale) nuclear fuel reprocessing plant in Cumbria, have been employed as flow monitors to update and extend the record of coastal water movement from the Irish Sea to the Clyde Sea area and, further north, to Loch Etive. The temporal trends in radiocaesium levels have been used to determine the extent of water mixing en route and to define mean advection rates. Flow conditions from the Irish Sea have changed considerably since the mid-1970s, the residence time of northern Irish Sea waters being ~12 months during 1978–1980 inclusive. Average transport times of four and six months are estimated for the Sellafield to Clyde and Sellafield to Etive transects respectively. Sellafield 137Cs levels in seawater were diluted by factors of 27 and 50 respectively during current movement to the Clyde and Etive areas. The decrease in salinity-corrected 137Cs concentrations between the Clyde and Etive suggests that dilution by Atlantic water occurs, the latter mainly entering the Firth of Lorne from the west. The majority (~94%) of the radiocaesium supply to Loch Etive enters the Firth of Lorne via the portion of the coastal current circulating west of Islay, only ~6% arriving via the Sound of Jura.  相似文献   
800.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号