首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54972篇
  免费   673篇
  国内免费   1276篇
测绘学   2498篇
大气科学   4341篇
地球物理   10570篇
地质学   22052篇
海洋学   3468篇
天文学   9103篇
综合类   2284篇
自然地理   2605篇
  2021年   276篇
  2020年   277篇
  2019年   324篇
  2018年   5349篇
  2017年   4596篇
  2016年   3503篇
  2015年   812篇
  2014年   1031篇
  2013年   1701篇
  2012年   1952篇
  2011年   3816篇
  2010年   2970篇
  2009年   3560篇
  2008年   2991篇
  2007年   3405篇
  2006年   1228篇
  2005年   1170篇
  2004年   1252篇
  2003年   1253篇
  2002年   1089篇
  2001年   815篇
  2000年   792篇
  1999年   685篇
  1998年   638篇
  1997年   628篇
  1996年   567篇
  1995年   533篇
  1994年   506篇
  1993年   425篇
  1992年   383篇
  1991年   410篇
  1990年   409篇
  1989年   386篇
  1988年   359篇
  1987年   432篇
  1986年   361篇
  1985年   444篇
  1984年   478篇
  1983年   462篇
  1982年   444篇
  1981年   375篇
  1980年   377篇
  1979年   311篇
  1978年   306篇
  1977年   295篇
  1976年   264篇
  1975年   254篇
  1974年   281篇
  1973年   305篇
  1972年   194篇
排序方式: 共有10000条查询结果,搜索用时 239 毫秒
861.
Fluoride ion interaction with synthetically prepared goethite has been investigated over a range of pH values (4–9) and F concentrations (10–3–10–5 M). The amount of F retained by goethite suspensions was found to be a function of pH, media ionic strength, F concentration, and goethite concentration. The lowest ionic strength (0.001 M KNO3) gave the highest adsorption medium. Uptake was minimal at pH >7 and increased with decreasing pH. Thermodynamic properties for fluoride adsorption at 298 K and 323 K were investigated. The isosteric heat of adsorption (H r) was calculated and the heterogeneity and homogeneity of the surface examined for goethite. In view of the importance of fluoride in dental health, the interaction of fluoride on goethite in the physical environment has important implications on dental epidemiology.  相似文献   
862.
863.
The results of electron-microscopy investigations of calcite precipitated in a water-conducting fracture in a ca. 1800 Ma granitic rock from 207 m below sea level at the island of Aspo on the southeastern (Baltic) coast of Sweden are compared with measurements of carbon, oxygen, and sulfur isotope composition of the calcite and embedded pyrite. Parts of the calcite had extremely low delta 13C values, indicative of biological activity, and contained bacteria-like microfossils occurring in colonies and as typical biofllms. X-ray microanalysis demonstrated these fossils to be enriched in carbon. Our results provide evidence for ancient life in deep granitic rock aquifers and suggest that the modern microbial life found there is intrinsic. Modeling historical and present geochemical processes in deep granitic aquifers should, therefore, preferably include biologically catalyzed reactions. The results also suggest that the search for life on other planets, e.g., Mars, should include subsurface material.  相似文献   
864.
We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.  相似文献   
865.
The discussion in the preceding paper is restricted to the uncertainties in magnetic-field-iine tracing in the magnetosphere resulting from published standard errors in the spherical harmonic coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. gn0 ± gn0). Numerical estimates of these uncertainties based on an analytic equation for axisymmetric field lines are in excellent agreement with independent computational estimates based on stepwise numerical integration along magnetic field lines. This comparison confirms the accuracy of the computer program used in the present paper to estimate the uncertainties in magnetic-field-line tracing that arise from published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) internal geomagnetic field (i.e. gnm ± gnm and hnm ± hnm). An algorithm is formulated that greatly reduces the computing time required to estimate these uncertainties in magnetic-field-line tracing. The validity of this algorithm is checked numerically for both the axisymmetric part of the internal geomagnetic field in the general case (1 n 10) and the complete internal geomagnetic field in a restrictive case (0 m n, 1 n 3). On this basis it is assumed that the algorithm can be used with confidence in those cases for which the computing time would otherwise be prohibitively long. For the complete internal geomagnetic field, the maximum characteristic uncertainty in the geocentric distance of a field line that crosses the geomagnetic equator at a nominal dipolar distance of 2 RE is typically 100 km. The corresponding characteristic uncertainty for a field line that crosses the geomagnetic equator at a nominal dipolar distance of 6 RE is typically 500 km. Histograms and scatter plots showing the characteristic uncertainties associated with magnetic-field-line tracing in the magnetosphere are presented for a range of illustrative examples. Finally, estimates are given for the maximum uncertainties in the locations of the conjugate points of selected geophysical observatories. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, including the associated uncertainties in thelocations of the conjugate points of geophysical observatories, should be regarded as first approximations in the sense that these estimates are only as accurate as the published standard errors in the full set of spherical harmomic coefficients. As in the preceding paper, howerver, all computational techniques developed in this paper can be used to derive more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients.Also Visiting Reader in Physics, University of Sussex, Palmer, Brighton, BN1 9QH, UK  相似文献   
866.
Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S-depletions associated with the lowest rates of sulfate reduction and the lowest 34S-depletions with the highest rates. However, at high sulfate reduction rates (>10 micromoles cm-3 d-1) the lowest fractionation was 20% independent of the rates. Overall, there was a similarity between the fractionation obtained by the natural populations of sulfate reducers and previous measurements from pure cultures. This was somewhat surprising given the extremely high rates of sulfate reduction in the experiments. Our results are explained if we conclude that the fractionation was mainly controlled by the specific rate of sulfate reduction (mass cell-1 time-1) and not by the absolute rate (mass volume-1 time-1). Sedimentary sulfides (mainly FeS2) were on average 40% depleted in 34S compared to seawater sulfate. This amount of depletion was more than could be explained by the isotopic fractionations that we measured during bacterial sulfate reduction. Therefore, additional processes contributing to the fractionation of sulfur isotopes in the sediments are indicated. From both Solar Lake and Logten Lagoon we were able to enrich cultures of elemental sulfur-disproportionating bacteria. We suggest that isotope fractionation accompanying elemental sulfur disproportionation contributes to the 34S depletion of sedimentary sulfides at our study sites.  相似文献   
867.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
868.
The Oso Bay, Texas, sediments from nine sites were analyzed by GC-MS for organics to measure contamination in the bay. In most of the sites sediments contained tetrachloroethene (87–1433 g/kg), bis (2-ethylhexyl)phthalate (40–193 g/kg), and aliphatic hydrocarbons, C8-C13 (720–2491 g/kg). Sources of these contaminants include a landfill, military facilities, and municipal and industrial discharges. Size analysis of the sediments indicates they contain a high percentage of muddy sand (50–75 percent), which suggests that Oso Bay consists of common bay margin sediments.  相似文献   
869.
A number of overflows from a large lava channel and tube system on the southwest rift zone of Mauna Loa were studied. Initial overflows were very low viscosity gas-rich phoehoe evidenced by flow-unit aspect ratios and vesicle sizes and contents. Calculated volumetric flow-rates in the channel range between 80 and 890 m3/s, and those of the overflows between 35 and 110 m3/s. After traveling tens to hundreds of meters the tops of these sheet-like overflows were disrupted into a surface composed of clinker and phoehoe fragments. After these 'a' overflows came to rest, lava from the interiors was able to break out on to the surface as phoehoe. The surface structure of a lava flow records the interaction between the differential shear rate (usually correlated with the volumetric flow-rate) and viscosity-induced resistance to flow. However, the interior of a flow, being better insulated, may react differently or record a later set of emplacement conditions. Clefts of toothpaste lava occurring within fields of clinker on proximal-type 'a' flows also record different shear rates during different times of flow emplacement. The interplay between viscosity and shear rate determines the final morphological lava type, and although no specific portion of lava ever makes a transition from 'a' back to phoehoe, parts of a flow can appear to do so.  相似文献   
870.
A large (4.8 m3, 1.3x107 g) artificial mafic melt with a bulk composition similar to that of a basalt (but with a high CaO content of 17 wt%) was generated during a demonstration of in situ vitrification and was allowed to cool naturally. During the melting process, convection was vigorous, resulting in a chemically and thermally homogeneous melt body. Once heating was complete, the cooling rate was rapid with the temperature dropping from 1500°C to 500°C in 6 days within the interior of the 3 m diameter, 1.5 m thick body. A 20 h period of constant temperature (1140°C) observed during colling was the result of latent heat released by widespread crystallization. The final crystalline assemblage consists of diopsidic to hedenbergitic pyroxene and anorthitic feldspar, with a subordinate amount of potassic feldspar, plus a small amount of evolved glass. The compositions and proportions of phases agree well with those predicted by the MELTS thermodynamic model. Thermal and textural evidence suggest that convection within the melt ceased coincident with formation of the first crystals. Textural investigation of core samples reveals large (up to 1 cm in length) acicular diopsidic pyroxenes in a matrix of smaller feldspar and zoned pyroxene crystals (500 m in length). Crystal shape and pyroxene composition vary as a function of position within the solidified body, as a function of cooling rate. Both crystal size and degree of crystallinity are highest in the central, most slowly-cooled parts of the rock. Crystal shape is characterized by tabular, equilibrium-growth forms in the slowly-cooled areas, grading to highly skeletal, dendritic forms at the rapidly-cooled edges of the body. The pyroxene crystals are dominantly homogeneous diopside, but crystals are characterized by thin Fe-rich hedenbergitic rims. These rims were deposited when Mg in the melt was depleted by diopside growth, and melt temperature had cooled sufficiently to allow Fe-rich pyroxene growth. Crystal growth rates can be calculated based on thermal behavior of the melt, reinforced by thermodynamic modelling, and are determined to be between 10-7 and 10-8 cm/s in the central part of the melt. These estimates agree well with growth rates in natural systems with similar cooling rates. Pyroxene crystals that formed at a higher cooling rates are characterized by higher Al and lower Mg contents relative to tabular equilibrium crystalline forms, presumably as a result of disequilibrium melt compositions at the crystal-melt interface.New Mexico Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号