全文获取类型
收费全文 | 3365篇 |
免费 | 64篇 |
国内免费 | 62篇 |
专业分类
测绘学 | 70篇 |
大气科学 | 410篇 |
地球物理 | 825篇 |
地质学 | 1016篇 |
海洋学 | 657篇 |
天文学 | 305篇 |
综合类 | 46篇 |
自然地理 | 162篇 |
出版年
2024年 | 13篇 |
2023年 | 15篇 |
2022年 | 22篇 |
2021年 | 49篇 |
2020年 | 56篇 |
2019年 | 65篇 |
2018年 | 134篇 |
2017年 | 127篇 |
2016年 | 143篇 |
2015年 | 88篇 |
2014年 | 173篇 |
2013年 | 221篇 |
2012年 | 142篇 |
2011年 | 203篇 |
2010年 | 193篇 |
2009年 | 190篇 |
2008年 | 164篇 |
2007年 | 176篇 |
2006年 | 146篇 |
2005年 | 122篇 |
2004年 | 105篇 |
2003年 | 96篇 |
2002年 | 99篇 |
2001年 | 76篇 |
2000年 | 79篇 |
1999年 | 55篇 |
1998年 | 45篇 |
1997年 | 41篇 |
1996年 | 25篇 |
1995年 | 37篇 |
1994年 | 19篇 |
1993年 | 17篇 |
1992年 | 21篇 |
1991年 | 18篇 |
1990年 | 18篇 |
1989年 | 13篇 |
1988年 | 15篇 |
1987年 | 24篇 |
1986年 | 16篇 |
1985年 | 15篇 |
1984年 | 29篇 |
1983年 | 31篇 |
1982年 | 22篇 |
1981年 | 17篇 |
1980年 | 25篇 |
1979年 | 12篇 |
1977年 | 16篇 |
1975年 | 15篇 |
1974年 | 10篇 |
1973年 | 7篇 |
排序方式: 共有3491条查询结果,搜索用时 15 毫秒
181.
182.
This study was performed to estimate the emission of non-CO 2 greenhouse gases(GHGs) from biomass burning at a large fire area.The extended methodology adopted the IPCC Guidelines(2003) equation for use on data from the Samcheok forest fire gathered using 30 m resolution Landsat TM satellite imagery,digital forest type maps,and growing stock information per hectare by forest type in 1999.Normalized burn ratio(NBR) technique was employed to analyze the area and severity of the Samcheok forest fire that occurred in 2000.The differences between NBR from pre-and post-fire datasets are examined to determine the extent and degree of change detected from burning.The results of burn severity analysis by dNBR of the Samcheok forest fire area revealed that a total of 16,200 ha of forest were burned.The proportion of the area characterized by a ’Low’ burn severity(dNBR below 152) was 35%,with ’Moderate’(dNBR 153-190) and ’High’(dNBR 191-255) areas were at 33% and 32%,respectively.The combustion efficiency for burn severity was calculated as 0.43 for crown fire where burn severity was ’High’,as 0.40 for ’Moderate’ severity,and 0.15 for ’Low’ severity surface fire.The emission factors for estimating non-CO 2 GHGs were separately applied to CO 130,CH 4 9,NO x 0.7 and N 2 O 0.11.Non-CO 2 GHGs emissions from biomass burning in the Samcheok forest fire area were estimated to be CO 44.100,CH 4 3.053,NO x 0.238 and N 2 O 0.038 Gg. 相似文献
183.
We report the results of an experiment that produced a residue which closely matches the hydrocarbon component of the Murchison carbonaceous chondrite. This experiment suggests that the parent material of the meteoritic component originated as polycyclic aromatic hydrocarbon species in carbon stars during their later stages of evolution. The experiments also indicate that the pathway from those formation sites to eventual incorporation into the meteorite parent body involved hydrogenation in a plasma in the solar nebula or in H II regions prior to the solar nebula. This model is consistent with what is known about the meteoritic hydrocarbon component including deuterium abundance, the observation of cosmic infrared emission bands best attributed to polycyclic aromatic hydrocarbon molecules, and the inherent stability of these molecules that allows their formation in stars and subsequent survival in the interstellar medium. 相似文献
184.
John Lee Grenfell Joachim W. Stock Stefanie Gebauer 《Planetary and Space Science》2010,58(10):1252-1257
We propose a mechanism for the oxidation of gaseous CO into CO2 occurring on the surface mineral hematite (Fe2O3(s)) in hot, CO2-rich planetary atmospheres, such as Venus. This mechanism is likely to constitute an important source of tropospheric CO2 on Venus and could at least partly address the CO2 stability problem in Venus’ stratosphere, since our results suggest that atmospheric CO2 is produced from CO oxidation via surface hematite at a rate of 0.4 petagrammes (Pg) CO2 per (Earth) year on Venus which is about 45% of the mass loss of CO2 via photolysis in the Venusian stratosphere. We also investigated CO oxidation via the hematite mechanism for a range of planetary scenarios and found that modern Earth and Mars are probably too cold for the mechanism to be important because the rate-limiting step, involving CO(g) reacting onto the hematite surface, proceeds much slower at lower temperatures. The mechanism may feature on extrasolar planets such as Gliese 581c or CoRoT-7b assuming they can maintain solid surface hematite which, e.g. starts to melt above about 1200 K. The mechanism may also be important for hot Hadean-type environments and for the emerging class of hot Super-Earths with planetary surface temperatures between about 600 and 900 K. 相似文献
185.
Jae-Ok Lee Kyung-Suk Cho Rok-Soon Kim Soojeong Jang Katsuhide Marubashi 《Solar physics》2018,293(9):129
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth. 相似文献
186.
Equilibrium models of differentially rotating nascent neutron stars are constructed, which represent the result of the accretion-induced collapse of rapidly rotating white dwarfs. The models are built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf model is constructed; (2) a stationary axisymmetric neutron star having the same total mass and angular momentum distribution as the white dwarf is constructed. The resulting collapsed objects consist of a high-density central core of size roughly 20 km, surrounded by a massive accretion torus extending over 1000 km from the rotation axis. The ratio of the rotational kinetic energy to the gravitational potential energy of these neutron stars ranges from 0.13 to 0.26, suggesting that some of these objects may have a non-axisymmetric dynamical instability that could emit a significant amount of gravitational radiation. 相似文献
187.
188.
Headland-bay beach (HBB) is one of the most prominent physiographic features on the oceanic margin of many countries in the world. Under the influence of a predominant swell, its curved periphery in natural environment may reach static equilibrium and remains stable without sediment supply from updrift and/or a riverain source within its own embayment. Coastal scientists and engineers have attempted to develop mathematical expressions to quantify this ideal bay shape since the 1940s. As the scenario with depleting sediment supply has become a common reality on many parts of the world coastline in more recent time, some coastal engineers have advocated a rational approach to mimicking the static bay shape found in nature in order to mitigate beach erosion as well as for coastal management. Nowadays, many useful applications have emerged since the publication of the parabolic bay shape equation (PBSE) developed for static equilibrium planform (SEP) in late 1980s. The advance in modern computer technologies and international collaboration has further facilitated the exchange of knowledge and applications of this static bay beach concept (SBBC). 相似文献
189.
A higher order panel method based on B-spline representation for both the geometry and the solution is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then shown to be evaluated using conventional numerical quadrature. By selecting a proper order for numerical quadrature, the accuracy of the present method can be increased to the machine limit. The far- and near-field influences are shown to be evaluated based on the same far-field approximation, but the near-field solution requires subdividing the panels into smaller subpanels continuously, which can be effectively implemented due to the B-spline representation of the geometry. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution on the blade surface, including very close to the tip and trailing edge regions, with far fewer panels than existing low-order panel methods. 相似文献
190.
In designing the coastal structures, the accurate estimation of the wave forces on them is of great importance. In this paper, the influences of the phase difference on wave pressure acting on a composite breakwater installed in the three-dimensional (3-D) wave field are studied numerically. We extend the earlier model [Hur, D.S., Mizutani, N., 2003. Coastal Engineering 47, 329–345] to simulate 3-D wave fields by introducing 3-D Navier–Stokes solver with the Smagorinsky's sub-grid scale (SGS) model. For the validation of the model, the wave field around a 3-D asymmetrical structure installed on a submerged breakwater, in which the complex wave deformations generate, is simulated, and the numerical solutions are compared to the experimental data reported by Hur, Mizutani, Kim [2004. Coastal Engineering (51, 407–420)]. The model is then adopted to investigate 3-D characteristics of wave pressure and force on a caisson of composite breakwater, and the numerical solutions were discussed with respect to the phase difference between harbor and seaward sides induced by the transmitted wave through the rubble mound or the diffraction. The numerical results reveal that wave forces acting on the composite breakwater are significantly different at each cross-section under influence of wave diffraction that is important parameter on 3-D wave interaction with coastal structures. 相似文献