首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   21篇
  国内免费   1篇
测绘学   4篇
大气科学   50篇
地球物理   87篇
地质学   131篇
海洋学   32篇
天文学   42篇
综合类   1篇
自然地理   51篇
  2022年   2篇
  2021年   4篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   13篇
  2016年   14篇
  2015年   10篇
  2014年   15篇
  2013年   35篇
  2012年   19篇
  2011年   27篇
  2010年   26篇
  2009年   33篇
  2008年   29篇
  2007年   25篇
  2006年   18篇
  2005年   8篇
  2004年   4篇
  2003年   12篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有398条查询结果,搜索用时 421 毫秒
151.
152.
153.
Going to the Extremes   总被引:8,自引:1,他引:8  
Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments. An erratum to this article is available at . An erratum to this article can be found at  相似文献   
154.
Variations in the isotopic composition of Fe in Late Archean to Early Proterozoic Banded Iron Formations (BIFs) from the Transvaal Supergroup, South Africa, span nearly the entire range yet measured on Earth, from –2.5 to +1.0‰ in 56Fe/54Fe ratios relative to the bulk Earth. With a current state-of-the-art precision of ±0.05‰ for the 56Fe/54Fe ratio, this range is 70 times analytical error, demonstrating that significant Fe isotope variations can be preserved in ancient rocks. Significant variation in Fe isotope compositions of rocks and minerals appears to be restricted to chemically precipitated sediments, and the range measured for BIFs stands in marked contrast to the isotopic homogeneity of igneous rocks, which have δ56Fe=0.00±0.05‰, as well as the majority of modern loess, aerosols, riverine loads, marine sediments, and Proterozoic shales. The Fe isotope compositions of hematite, magnetite, Fe carbonate, and pyrite measured in BIFs appears to reflect a combination of (1) mineral-specific equilibrium isotope fractionation, (2) variations in the isotope compositions of the fluids from which they were precipitated, and (3) the effects of metabolic processing of Fe by bacteria. For minerals that may have been in isotopic equilibrium during initial precipitation or early diagenesis, the relative order of δ56Fe values appears to decrease in the order magnetite > siderite > ankerite, similar to that estimated from spectroscopic data, although the measured isotopic differences are much smaller than those predicted at low temperature. In combination with on-going experimental determinations of equilibrium Fe isotope fractionation factors, the data for BIF minerals place additional constraints on the equilibrium Fe isotope fractionation factors for the system Fe(III)–Fe(II)–hematite–magnetite–Fe carbonate. δ56Fe values for pyrite are the lowest yet measured for natural minerals, and stand in marked contrast to the high δ56Fe values that are predicted from spectroscopic data. Some samples contain hematite and magnetite and have positive δ56Fe values; these seem best explained through production of high 56Fe/54Fe reservoirs by photosynthetic Fe oxidation. It is not yet clear if the low δ56Fe values measured for some oxides, as well as Fe carbonates, reflect biologic processes, or inorganic precipitation from low-δ56Fe ferrous-Fe-rich fluids. However, the present results demonstrate the great potential for Fe isotopes in tracing the geochemical cycling of Fe, and highlight the need for an extensive experimental program for determining equilibrium Fe isotope fractionation factors for minerals and fluids that are pertinent to sedimentary environments.  相似文献   
155.
Thallium stable isotope ratio and mass fraction measurements were performed on sixteen geological reference materials spanning three orders of magnitude in thallium mass fraction, including both whole rock and partially separated mineral powders. For stable isotope ratio measurements, a minimum of three independent digestions of each reference material was obtained. High‐precision trace element measurements (including Tl) were also performed for the majority of these RMs. The range of Tl mass fractions represented is 10 ng g?1 to 16 μg g?1, and Tl stable isotope ratios (reported for historical reasons as ε205Tl relative to NIST SRM 997) span the range ?4 to +2. With the exception – attributed to between‐bottle heterogeneity – of G‐2, the majority of data are in good agreement with published or certified values, where available. The precision of mean of independent measurement results between independent dissolutions suggests that, for the majority of materials analysed, a minimum digested mass of 100 mg is recommended to mitigate the impact of small‐scale powder heterogeneity. Of the sixteen materials analysed, we therefore recommend for use as Tl reference materials the USGS materials BCR‐2, COQ‐1, GSP‐2 and STM‐1; CRPG materials AL‐I, AN‐G, FK‐N, ISH‐G, MDO‐G, Mica‐Fe, Mica‐Mg and UB‐N; NIST SRM 607 and OREAS14P.  相似文献   
156.
We present a concerted international effort to cross-calibrate five synthetic Th isotope reference materials (UCSC Th "A", OU Th "U", WUN, IRMM-35 and IRMM-36), and six rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2, USGS BHVO-2, LV18) using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We then compare our new values with a compilation of literature mass spectrometric data for these reference materials and derive recommended "consensus"230Th/232Th values for each. We also present isotope dilution U and Th concentration data for four rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2).  相似文献   
157.
We have compared detailed planktonic and benthonic foraminiferal carbon and oxygen isotope records from the Palaeocene and early Eocene successions at DSDP Site 577 (Shatsky Rise, North Pacific), a composite section derived from DSDP Leg 74 sites (Walvis Ridge, South Atlantic) and a composite section from ODP Leg 113 sites (Maud Rise, Weddell Sea). The δ13C records of Palaeocene and early Eocene Foraminifera at Site 577 and the Leg 74 sites show that an increase in δ13C values in surface waters at 64 Ma (end of Zone P1) resulted in increased vertical carbon isotope gradients (δ13C) between surface and deeper dwelling planktonic foraminifera, and between surface-dwelling planktonics and benthonic foraminifera which became progressively steeper until the iniddle Late Palaeocene (Zone P4). This steepening also occurs in the latest Palaeocene of the composite Leg 113 section and can be explained by an increase in surface ocean productivity. This increase in productivity probably resulted in an expansion of the oxygen minimum zone (OMZ). Benthonic δ13C values increased during the late Palaeocene in Site 577 and the composite Leg 74 section, suggesting that the Palaeocene carbon isotope maximum was composed of both within-ocean reservoir (increased surface water productivity) and between-reservoir (organic carbon burial) ftactionation effects. The benthonic δ13C increase lags the surface ocean δ13C increase in the early Palaeocene (63–64 Ma) suggesting that surface water productivity increase probably led an increase in the burial rate of organic carbon relative to carbonate sedimentation. Moreover, inter-site δ13C comparisons suggest that the locus of deep to intermediate water formation for the majority of the Palaeocene and the earliest Eocene was more likely to have been in the high southern latitudes than in the lower latitudes. Oxygen isotope data show a decline in deeper water temperatures in the early and early late Palaeocene, followed by a temperature increase in the late Palaeocene and across the PalaeoceneEocene boundary. We speculate that these changes in deeper water temperatures were related to the flux of CO2 between the oceans and the atmosphere through a mechanism operating at the high southern latitudes.  相似文献   
158.
159.
It has been shown that a high incidence of hepatomas are present in winter flounder (Pseudopleuronectes americanus) obtained from Boston Harbor. It has been suggested that this may be a consequence of locally high levels of polycyclic aromatic hydrocarbons found in the sediment. The purpose of this study was to determine whether transforming DNA sequences (oncogenes) could be identified in liver neoplasms isolated from feral fish and to study their relationship to their corresponding proto-oncogenes. The ultimate aim of this study is to characterize novel mutations in oncogenes derived from these hepatomas to correlate these genetic changes with chemical exposure history. Genomic DNA was isolated from liver neoplasms and transfected into NIH3T3 mouse fibroblasts to assay for the formation of transformed foci. DNA was prepared from transformed foci and analyzed by Southern blot hybridization to viral DNA probes specific for c-Ki-ras and c-Ha-ras DNA sequences. A c-Ki-ras oncogene was identified in a transformant derived from one of the two tumors assayed. Comparison of c-Ki-ras DNA sequences of tumor and tumor-derived transformants indicate that the activated oncogene in the transformant is of flounder origin. We are currently analyzing the flounder oncogene for activating point mutations by primer-directed enzymatic amplification and direct sequence analysis.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号