首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   26篇
  国内免费   6篇
测绘学   7篇
大气科学   35篇
地球物理   96篇
地质学   139篇
海洋学   36篇
天文学   110篇
综合类   1篇
自然地理   35篇
  2024年   3篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   15篇
  2019年   7篇
  2018年   22篇
  2017年   14篇
  2016年   15篇
  2015年   19篇
  2014年   19篇
  2013年   19篇
  2012年   18篇
  2011年   23篇
  2010年   14篇
  2009年   32篇
  2008年   27篇
  2007年   18篇
  2006年   25篇
  2005年   20篇
  2004年   19篇
  2003年   15篇
  2002年   16篇
  2001年   9篇
  2000年   5篇
  1999年   11篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1990年   4篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   6篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1968年   1篇
  1967年   2篇
  1944年   1篇
  1943年   1篇
排序方式: 共有459条查询结果,搜索用时 15 毫秒
81.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   
82.
Sigmoidal particle density distribution in a subplinian scoria fall deposit   总被引:1,自引:1,他引:0  
A general expression to describe particle density distribution in tephra fall deposits is essential to improve fallout tephra mass determination and numerical modelling of tephra dispersion. To obtain particle density distributions in tephra fall deposits, we performed high-resolution componentry and particle density analyses on samples from the 2006 subplinian eruption of Tungurahua volcano in Ecuador. Six componentry classes, including pumice and scoria, have been identified in our sample collection. We determined the class of 300 clasts in each 0.5? fractions from ?4.5? to 3.5? and carried out water pycnometry density measurements on selected size fractions. Results indicate that the mean particle density increases with ? up to a plateau of ~2.6?g/cm3 for clasts finer than 1.5?. The density of scoria and pumice increases between ?3 and 1?, while dense particle density is sub-constant with grainsize. We show that the mean particle density ?? of the vesicular fractions is a function of grainsize i (? scale) given by a sigmoidal law: $ \mu (i)={{{K+\beta }} \left/ {{\left( {1+\alpha {e^{-ri }}} \right)}} \right.} $ , where K, ??, ?? and r are constants. These sigmoidal distributions can be used to determine accurately the load of each componentry class and should be applicable to many tephra deposits and for modelling purposes.  相似文献   
83.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   
84.
Since 1994, the Rumuruti (R) chondrites have been recognized as a new, well-established chondrite group differing from carbonaceous, ordinary, and enstatite chondrites. The first R chondrite, Carlisle Lakes, was found in Australia in 1977. Meanwhile, the number has increased to 107 (December, 2010). This group is named after the Rumuruti meteorite, the first and so far the only R chondrite fall. Most of the R chondrites are breccias containing a variety of different clasts embedded in a clastic matrix. Some textural and mineralogical characteristics can be summarized as follows: (a) the chondrule abundance in large fragments and in unbrecciated rocks is ∼35–50 vol%; (b) Ca,Al-rich inclusions are rare; (c) the olivine abundance is typically 65–78 vol%; (d) the mean chondrule diameter is ∼400 μm; (e) in unequilibrated R chondrites, low-Ca pyroxene is dominating, whereas in equilibrated R chondrites it is Ca-rich pyroxene; (f) the typical olivine in a metamorphosed lithology is ∼Fa38–40; (g) matrix olivine in unequilibrated, type 3 fragments and rocks has much higher Fa (∼45–60 mol%) compared to matrix olivines in type 4–6 lithologies (∼Fa38–41); (h) spinels have a high TiO2 of ∼5 wt%; (i) abundant different noble metal-bearing phases (metals, sulfides, tellurides, arsenides) occur. The exception is the metamorphosed, type 5/6 R chondrite La Paz Icefield 04840 which contains hornblende, phlogopite, and Ca-poor pyroxene, the latter phase typically occurring in low-grade metamorphosed R chondrites only.In bulk composition, R chondrites have some affinity to ordinary chondrites: (a) the absence of significant depletions in Mn and Na in R chondrites and ordinary chondrites is an important feature to distinguish these groups from carbonaceous chondrites; (b) total Fe (∼24 wt%) of R chondrites is between those of H and L chondrites (27.1 and 21.6 wt%, respectively); (c) the average CI/Mg-normalized lithophile element abundances are ∼0.95 × CI, which is lower than those for carbonaceous chondrites (≥1.0 × CI) and slightly higher than those for ordinary chondrites (∼0.9 × CI); (d) trace element concentrations such as Zn (∼150 ppm) and Se (∼15 ppm) are much higher than in ordinary chondrites; (e) the whole rock Δ17O of ∼2.7 for R chondrites is the highest among all meteorite groups, and the mean oxygen isotope composition is δ17O = 5.36 ± 0.43, δ18O = 5.07 ± 0.86, Δ17O = +2.72 ± 0.31; (f) noble gas cosmic ray exposure ages of R chondrites range between ∼0.1 and 70 Ma. More than half of the R chondrites analyzed for noble gases contain implanted solar wind and, thus, are regolith breccias. The 43 R chondrites from Northern Africa analyzed so far for noble gases seem to represent at least 16 falls. Although the data base is still scarce, the data hint at a major collision event on the R chondrite parent body between 15 and 25 Ma ago.  相似文献   
85.
The late Holocene environmental history of the Lesotho highlands, southern Africa, is poorly understood with few detailed studies to date. At Likoaeng, Senqu Valley, Lesotho, a 3 m stratified sedimentary sequence from an open-air archaeological site records vegetation development for the period 3400-1070 cal. BP. Phytolith analyses and bulk sediment organic matter δ13C indicate that C4 grassland dominated the lower part of the sequence until approximately 2960 cal. BP when there was a switch to C3 Pooid grassland (2960-2160 cal. BP). Also noted was a change from hunting mainly bovids to a dominance of fishing at the site. The change in grassland type and archaeological subsistence strategies corresponds with an episode of neoglacial cooling and the expansion of Alpine sourgrasses into lower altitudes. From 2160 to 1600 cal. BP grassland became a mix of C3 and C4 types and by 1600-1070 cal. BP there was a return to C4 dominated grassland. During this latter phase there was a reversal from fishing to hunting again (and eventually some keeping of domestic livestock) at the site. These data outline the vegetation response to latitudinal shifts of frontal systems, and relatively strong atmospheric circulation variability, perhaps underpinned by variations of polar water into the Benguela Current during the late Holocene.  相似文献   
86.
The purpose of this paper is to bring into light the landscape change and natural resources management in the Moroccan Middle Atlas across centuries. The pastoral way of life prevailed for many centuries. However, following the results of this research, evidence of important socioeconomic changes and resources use is found. Ancient agricultural activities, as well as the exploitation of the forest and even mineral resources have been growing activities over time. The survey shows that the agricultural activity has existed for several centuries as indicated by terraces and encrusted travertine channels used for irrigation. The landscapes and the ways of resources use are therefore in continuous change. The increasing needs in water and agriculture for demographic and climatic reasons (the dry periods in summer or periodic droughts) generated because of intensive over-exploitation of resources. The vegetation degraded facing human pressure (the pastoral activities, the coal of wood making, the lime manufacturing, etc.). Field observations show that irrigation has been used in this domain, for several centuries. Travertine channels, encrusted in the valleys of Jnane Mas and Arougou, illustrate these ancient uses of water resources for agriculture irrigation.  相似文献   
87.
Saturn’s proton radiation belts extend over the orbits of several moons that split this region of intense radiation into several distinct belts. Understanding their distribution requires to understand how their particles are created and evolve. High-energy protons are thought to be dominantly produced by cosmic ray albedo neutron decay (CRAND). The source of the lower energies and the role of other effects such as charge exchange with the gas originating from Enceladus is still an open question. There is also no certainty so far if the belts exist independently from each other and the rest of the magnetosphere or if and how particles are exchanged between these regions. We approach these problems by using measurements acquired by the MIMI/LEMMS instrument onboard the Cassini spacecraft. Protons in the range from 500 keV to 40 MeV are considered. Their intensities are averaged over 7 years of the mission and converted to phase space densities at constant first and second adiabatic invariant. We reproduce the resulting radial profiles with a numerical model that includes radial diffusion, losses from moons and interactions with gas, and a phenomenological source. Our results show that the dominating effects away from the moon sweeping corridors are diffusion and the source, while interactions with gas are secondary. Based on a GEANT4 simulation of the interaction of cosmic rays with Saturn’s rings, we conclude that secondary particles produced within the rings can only account for the high-energy part of the source. A comparison with the equivalent processes within Earth’s atmosphere shows that Saturn’s atmosphere can contribute to the production of the lower energies and might be even dominating at the higher energies. Other possibilities to supply the belts and exchange particles between them, as diffusion and injections from outside the belts, or stripping of ENAs, can be excluded.  相似文献   
88.
89.
We investigate the Gaussianity of the 4-yr COBE DMR data (in HEALPix pixelization) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale–scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE DMR data.  相似文献   
90.
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine‐rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O‐poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral‐chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer‐sized, and super‐dense chondrule‐forming regions with extremely high solid‐to‐gas mass ratios of 1000 or more.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号