首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
  国内免费   7篇
大气科学   4篇
地球物理   2篇
地质学   58篇
海洋学   3篇
综合类   1篇
  2017年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有68条查询结果,搜索用时 358 毫秒
11.
This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba‘s (1959) invariant imbeddlng is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission.The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei (1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the ntild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.  相似文献   
12.
Core rocks recovered from the main hole (5158 m deep) of the Chinese Continental Scientific Drilling (CCSD‐MH) project, southern Sulu UHP terrane, east‐central China, consist of eclogites, various gneisses and minor metaperidotite cumulates; this lithological section underwent subduction‐zone UHP metamorphism. Coesite‐bearing eclogites are mainly present between the depths of 100–2000 m, but below 2000 m, mafic eclogites are rare. Selected elements (Zr, Nb, Cr, Fe, Si, Mg, Al & Ti) in rutile from 39 eclogite cores from 100 to 2774 m, and major elements of minerals from representative eclogites were analysed by electron microprobe. Zirconium and Nb concentrations of rutile cluster ~100–400 and 200–700 ppm respectively. However, Zr and Nb contents in rutile from strongly retrograded eclogites show larger variations than those of fresh or less retrograded eclogites, implying that somehow fluid infiltration affected rutile chemistry during retrograde metamorphism. Zr contents in rutile inclusions in garnet and omphacite are slightly lower than those of the matrix rutile, suggesting that the rutile inclusions formed before or close to the peak temperature. The P–T conditions of the CCSD‐MH eclogites were estimated by both Fe–Mg exchange and Zr‐in‐rutile thermometers, as well as by the Grt–Cpx–Phn–Ky geothermobarometer. The maximum temperature range of 700–811 °C calculated at 40 kbar using the Zr‐in‐rutile thermometer is comparable with temperature estimates by the Fe–Mg exchange thermometer. The temperature estimates of eclogites in a ~3000 m thick section define a continuous gradient, and do not show a distinct temperature gap, suggesting that the rocks from 100 to 3000 m depth might belong to a single, large‐scale UHP slab. These data combined with P–T calculations for CCSD‐MH peridotites yield a low geotherm (~5 °C km?1) for the Triassic subduction zone between the Sino‐Korean and Yangtze cratons; it lies ~30–35 mW m?2 conductive model geotherm.  相似文献   
13.
运用溃变理论及V-3θ图结构预测法对华南后汛期台风暴雨进行预测及检验。对台风暴雨强度及落点的预测取得了较好的效果。  相似文献   
14.
The Kulet eclogite in the Kokchetav Massif, northern Kazakhstan, is identified as recording a prograde transformation from the amphibolite facies through transitional coronal eclogite to fully recrystallized eclogite (normal eclogite). In addition to minor bodies of normal eclogite with an assemblage of Grt + Omp + Qz + Rt ± Ph and fine‐grained granoblastic texture (type A), most are pale greyish green bodies consisting of both coronal and normal eclogites (type B). The coronal eclogite is characterized by coarse‐grained amphibole and zoisite of amphibolite facies, and the growth of garnet corona along phase boundaries between amphibole and other minerals as well as the presence of eclogitic domains. The Kulet eclogites experienced a four‐stage metamorphic evolution: (I) pre‐eclogite stage, (II) transition from amphibolite to eclogite, (III) a peak eclogite stage with prograde transformation from coronal eclogite to UHP eclogite and (IV) retrograde metamorphism. Previous studies made no mention of the presence of amphibole or zoisite in either the pre‐eclogite stage or coronal eclogite, and so did not identify the four‐stage evolution recognized here. P–T estimates using thermobarometry and Xprp and Xgrs isopleths of eclogitic garnet yield a clockwise P–T path and peak conditions of 27–33 kbar and 610–720 °C, and 27–35 kbar and 560–720 °C, respectively. P–T pseudosection calculations indicate that the coexistence of coronal and normal eclogites in a single body is chiefly due to different bulk compositions of eclogite. All eclogites have tholeiitic composition, and show flat or slightly LREE‐enriched patterns [(La/Lu)N = 1.1–9.6] and negative Ba, Sr and Sc and positive Th, U and Ti anomalies. However, normal eclogite has higher TiO2 (1.35–2.65 wt%) and FeO (12.11–16.72 wt%) and REE contents than those of coronal eclogite (TiO2 < 0.9 wt% and FeO < 12.11 wt%) with one exception. Most Kulet eclogites plot in the MORB and IAB fields in the 2Nb–Zr/4–Y and TiO2–FeO/MgO diagrams, although displacement from the MORB–OIB array indicates some degree of crustal involvement. All available data suggest that the protoliths of the Kulet eclogites were formed at a passive continent marginal basin setting. A schematic model involving subduction to 180–200 km at 537–527 Ma, followed by slab breakoff at 526–507 Ma, exhumation and recrystallization at crustal depths is applied to explain the four‐stage evolution of the Kulet eclogite.  相似文献   
15.
波浪与外壁透空双方形沉箱相互作用   总被引:1,自引:1,他引:0  
在线性波浪理论下,利用复合边界元素法(composite BEM)数值解析在等水深、规则波浪入射二种外壁透空双方形沉箱的无因次波力及Kd绕射分布图,并分别与其他研究者所作双圆筒内、外圆柱无因次波力及绕射分布图的计算结果进行比较,都说明本模式的合理性和可行性。在考虑不同透水参数下,分别计算波浪作用在内、外结构物的波力及沉箱四周绕射系数大小分布图。计算结果显示:波浪作用于外壁透空全透水双方形沉箱,外方柱无因次最大波力值会随着透水参数增加而降低;内方柱无因次最大波力值则随着透水参数增加而增加。本研究结果可供设计外海透水方形沉箱结构交互作用参考。  相似文献   
16.
Ultramafic blocks that themselves contain eclogite lenses in the Triassic Su-Lu ultrahigh-P terrane of eastern China range in size from hundreds of metres to kilometres. The ultramafic blocks are enclosed in quartzofeldspathic gneiss of early Proterozoic age. Ultramafic rocks include garnetiferous lherzolite, wehrlite, pyroxenite, and hornblende peridotite. Garnet lherzolites are relatively depleted in Al2O3 (<3.8wt%), CaO (<3.2%) and TiO2 (<0.11 wt%), and are low in total REE contents (several p.p.m.), suggesting that the rocks are residual mantle material that was subjected to low degrees of partial melting. The eclogite lenses or layers within the ultramafic rocks are characterized by higher MgO and CaO, lower Al2O3 and TiO2 contents, and a higher CaO/Al2O3 ratio compared to eclogites enclosed in the quartzofeldspathic gneiss. Scatter in the plots of major and trace elements vs. MgO, REE patterns and La, Sm and Lu contents suggest that some eclogites were derived from melts formed by various degrees (0.05–0.20) of partial melting of peridotite, and that other eclogites formed by accumulation of garnet and clinopyroxene ± trapped melt in the upper mantle. Both ultramafic and eclogitic rocks have experienced a complex metamorphic history. At least six stages of recrystallization occurred in the ultramafic rocks based on an analysis of reaction textures and mineral compositions. Stage I is a high temperature protolith assemblage of Ol + Opx + Cpx + Spl. Stage II consists of the ultrahigh-pressure assemblage Ol + Cpx + Opx + Grt. Stage III is manifested by the appearance of fine-grained garnet after coarse-grained garnet. Stage IV is characterized by formation of kelyphitic rims of fibrous Opx and Cpx around garnet, and replacement of garnet by spinel and pargasitic-hornblende. Stage V is represented by the assemblage Ol + Opx + Prg-Hbl + Spl. The mineral assemblages of stages VIA and VIB are Ol + Tr-Amp + Chl and Serp + Chl ± talc, respectively. Garnet and orthopyroxene all show a decrease in MgO with retrogressive recrystallization and Na2O in clinopyroxene also decreases throughout this history. Eclogites enclosed within ultramafic blocks consist of Grt + Omp + Rt ± Qtz ± Phn. A few quartz-bearing eclogites contain rounded and oval inclusion of polycrystalline quartz aggregates after coesite in garnet and omphacite. Minor retrograde features include thin symplectic rims or secondary amphiboles after Cpx, and ilmenite after rutile. P-T estimates indicate that the ultrahigh-metamorphism (stage II) of ultramafic rocks occurred at 820-900d? C and 36-41 kbar and that peak metamorphism of eclogites occurred at 730-900d? C and >28 kbar. Consonant with earlier plate tectonic models, we suggest that these rocks were underplated at the base of the continental crust. The rocks then underwent ultrahigh-pressure metamorphism and were tectonically emplaced into thickened continental crust during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   
17.
俯冲带发生的化学作用导致了广泛的脱气作用和岩浆活动,控制着全球物质循环和大陆地壳的生长,是地球演化的基础.实际上,俯冲带化学作用是板块俯冲过程中流体形成、运移和流体-岩石(矿物)相互作用的结果.  相似文献   
18.
The Hong'an region in the Qinling–Dabie collisional zone in eastern China hosts a series of metamorphic rocks exposing a south-to-north distribution from blueschist/blueschist–greenschist, amphibolite, eclogite (kyanite free) and kyanite–eclogite to coesite–eclogite facies rocks that represent progressively deeper levels of the Mesozoic subduction–collision complex. The Hong'an area is interesting for three reasons: (1) it escaped the thermal and structural overprint imparted on much of the Dabie Mountains during Early Cretaceous intrusion of voluminous granites and granodiorites; (2) the high-pressure (HP) Hong'an eclogites are widely distributed, often preserve prograde crystallization histories and can be directly linked in time and space to the blueschist/blueschist–greenschist rocks exposed to the south; (3) the blueschist/blueschist–greenschist facies rocks are generally better exposed than their equivalents in the southeastern Dabie Mountains and offer some opportunity for simultaneous structural and metamorphic analysis. The Hong'an area HP rocks offer perhaps the closest approximation to a preserved snapshot of Mesozoic pressure–temperature (PT) conditions attending early subduction–exhumation in the region, and are thus essential to generating a coherent picture of the dynamics attending both metamorphism and exposure of the coeval ultrahigh-pressure (UHP) rocks. The purpose of this contribution is twofold: (1) to document previously unpublished metamorphic and structural data characterizing these HP sequences and their relative continuity in Hong'an; (2) to incorporate these data with recent geochronologic, structural and paleomagnetic information in the context of protracted, late Paleozoic through Mesozoic subduction, collision and exhumation. Metamorphism and exhumation of some of the southern Hong'an HP sequences appear to have occurred concomitant with oceanic subduction immediately to the west, and thus may have preceded widespread continental subduction/collision. Moreover, all of the HP–UHP sequences in the region were exhumed before the end of collision between the Sino-Korean and Yangtze cratons at ca. 160 Ma. Exhumation of HP–UHP rocks both before and during continental plate collision is neither novel for central China nor for other HP–UHP zones, but is important to take into account when reconstructing the evolution of such orogens.  相似文献   
19.
Abstract Sodic amphiboles are common in Franciscan type II and type III metabasites from Cazadero, California. They occur as (1) vein-fillings, (2) overgrowths on relict augites, (3) discrete tiny crystals in the groundmass, and (4) composite crystals with metamorphic Ca–Na pyroxenes in low-grade rocks. They become coarse-grained and show strong preferred orientation in schistose high-grade rocks. In the lowest grade, only riebeckite to crossite appears; with increasing grade, sodic amphibole becomes, first, enriched in glaucophane component, later coexists with actinolite, and finally, at even higher grade, becomes winchite. Actinolite first appears in foliated blueschists of the upper pumpellyite zone. It occurs (1) interlayered on a millimetre scale with glaucophane prisms and (2) as segments of composite amphibole crystals. Actinolite is considered to be in equilibrium with other high-pressure phases on the basis of its restricted occurrence in higher grade rocks, textural and compositional characteristics, and Fe/Mg distribution coefficient between actinolite and chlorite. Detailed analyses delineate a compositional gap for coexisting sodic and calcic amphiboles. At the highest grade, winchite appears at the expense of the actinolite–glaucophane pair. Compositional characteristics of Franciscan amphiboles from Ward Creek are compared with those of other high P/T facies series. The amphibole trend in terms of major components is very sensitive to the metamorphic field gradient. Na-amphibole appears at lower grade than actinolite along the higher P/T facies series (e.g. Franciscan and New Caledonia), whereas reverse relations occur in the lower P/T facies series (e.g. Sanbagawa and New Zealand). Available data also indicate that at low-temperature conditions, such as those of the blueschist and pumpellyite–actinolite facies, large compositional gaps exist between Ca- and Na-amphiboles, and between actinolite and hornblende, whereas at higher temperatures such as in the epidote–amphibolite, greenschist and eclogite facies, the gaps become very restricted. Common occurrence of both sodic and calcic amphiboles and Ca–Na pyroxene together with albite + quartz in the Ward Creek metabasites and their compositional trends are characteristic of the jadeite–glaucophane type facies series. In New Caledonia blueschists, Ca–Na pyroxenes are also common; Na-amphiboles do not appear alone at low grade in metabasites, instead, Na-amphiboles coexist with Ca-amphiboles throughout the progressive sequence. However, for metabasites of the intermediate pressure facies series, such as those of the Sanbagawa belt, Japan and South Island, New Zealand, Ca–Na pyroxene and glaucophane are not common; sodic amphiboles are restricted to crossite and riebeckite in composition and clinopyroxenes to acmite and sodic augite, and occur only in Fe2O3-rich metabasites. The glaucophane component of Na-amphibole systematically decreases from Ward Creek, New Caledonia, through Sanbagawa to New Zealand. This relation is consistent with estimated pressure decrease employing the geobarometer of Maruyama et al. (1986). Similarly, the decrease in tschermakite content and increase in NaM4 of Ca-amphiboles from New Zealand, through Sanbagawa to New Caledonia is consistent with the geobarometry of Brown (1977b). Therefore, the difference in compositional trends of amphiboles can be used as a guide for P–T detail within the metamorphic facies series.  相似文献   
20.
运用高分辨率层序地层的短期基准面旋回原理,对发育于陕甘宁盆地城华地区长 3油层组缓坡带上的三角洲前缘的储集砂体进行细致分析,按成因将储层砂体详细划分为三大类 6种类型,而这几种类型砂体的成因明显受基准面升降、可容纳空间 (A)和沉积物补给量 (S)之间变化关系两方面的影响。在基准面上升过程中,A/S<1时,以截削式河道砂体为主,A/S >1时,则为完整式河道砂体;在基准面下降过程中,A/S <1时,以孤立式河口坝砂体为主,A/S>1时,则以叠加式河口坝和远砂坝砂体为主;在水下坡折带沉积区,则为复合式坝砂体。基准面升降过程中,短期基准面旋回的规律性变化,影响着不同成因砂体的分布,据此建立了坳陷型湖盆缓坡带三角洲前缘不同砂体类型的成因分布模式  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号