首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24451篇
  免费   176篇
  国内免费   919篇
测绘学   1410篇
大气科学   1984篇
地球物理   4509篇
地质学   11627篇
海洋学   1004篇
天文学   1631篇
综合类   2162篇
自然地理   1219篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2018年   4761篇
  2017年   4039篇
  2016年   2580篇
  2015年   237篇
  2014年   84篇
  2013年   25篇
  2012年   989篇
  2011年   2730篇
  2010年   2019篇
  2009年   2312篇
  2008年   1889篇
  2007年   2361篇
  2006年   58篇
  2005年   199篇
  2004年   404篇
  2003年   413篇
  2002年   251篇
  2001年   49篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   21篇
  1980年   21篇
  1979年   1篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
More than half a century of geological and exploration studies have taken place in the Red Sea area, and still very limited information is available to the geological community in regard to the lithological distribution and the stratigraphic architecture. In this study, extensive well data was used to build the first lithologic and stratigraphic 3D models of the entire Red Sea to better understand the lithological distribution. The potential models have been constrained by bathymetric and geophysical data. Studied data demonstrate that up to 5 km of sediments were deposited in the Red Sea. It is mainly comprised of limestones, evaporites, and shales. Our models show that the evaporite body represents more than 70% of the Red Sea succession. In particular, the evaporite succession seems to be well developed in the southern region. Salt dome features are present and developed close to the margins. The models suggest that domal formation did not enable thick carbonate accumulation in some parts of the basin but the carbonate generally follows the evaporite trend. The models help to identify the main controls leading to salt diapir by highlighting the distribution of this body and the geometry of geological structures. Syn-rift faulting and rifting has been one of the most prominent structural features. Complex interplay of tectono-stratigraphic events played a significant role in shaping the stratigraphic evolution of the Red Sea basin with multiple evolution phases of paleoenvironment and paleogeographic were recognized based on the models. Our synthesis and interpretation support that moderately deep marine conditions dominated in the Miocene, whereas shallow seas dominated the whole basin during the Plio-Pleistocene period as a result of episodic marine invasion. However, lacustrine environment may have prevailed at the Oligocene time in isolated half grabens.  相似文献   
992.
This work depends on integrated high-resolution calcareous plankton nannofossil and foraminiferal biostratigraphic analyses for three Upper Cretaceous-Lower Paleogene successions at Farafra-Abu Minqar area, Western Desert, Egypt. These sections are distributed in a north-south geologic profile as follows: El Aqabat, North Gunna, and Abu Minqar. Lithostratigraphically, four formations are recorded in the study area, namely, Khoman (at base), Dakhla, Tarawan, and Esna (at top). In the north at El Aqabat section, Khoman Formation (carbonate facies) is only represented which changes partially toward the south to Dakhla Formation (siliciclastic facies). In the extreme south at Abu Minqar section, it changes completely into siliciclastic facies of Dakhla Formation. Biostratigraphically, seven calcareous nannofossil and eleven planktonic foraminiferal zones represent the Late Cretaceous-Early Paleogene are identified. Based on the occurrence or missing of these zones accompanied with the field criteria resulted in detecting four tectonic events. These tectonic events took place at the Cretaceous/Paleogene (K/Pg), the Danian/Selandian (D/S), the Selandian/Thanetian (S/T), and the Paleocene/Eocene (P/E) boundaries. These tectonic events are related to the impact of the Syrian Arc System. Four sequence boundaries (SB1, SB2, SB3, and SB4) are defined in the Late Cretaceous-Early Paleogene sequence in the Farafra-Abu Minqar area.  相似文献   
993.
Characterization of soil water retention, e.g., water content at field capacity (FC) and permanent wilting point (PWP) over a landscape plays a key role in efficient utilization of available scarce water resources in dry land agriculture; however, direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India (N=370) was used to develop PTFs. The developed PTFs were tested in two independent datasets from arid regions of India (N=36) and an arid region of USA (N=1789). While testing these PTFs using independent data from India, root mean square error (RMSE) was found to be 2.65 and 1.08 for FC and PWP, respectively, whereas for most of the tested ‘established’ PTFs, the RMSE was >3.41 and >1.15, respectively. Performance of the developed PTFs from the independent dataset from USA was comparable with estimates derived from ‘established’ PTFs. For wide applicability of the developed PTFs, a user-friendly soil moisture calculator was developed. The PTFs developed in this study may be quite useful to farmers for scheduling irrigation water as per soil type.  相似文献   
994.
In arid regions, because of spatial variability, using single climate records is difficult to reconstruct the past climate change for the drainage basins. Holocene environmental records were collected from the upper, middle and lower regions of the Shiyang River drainage basin in the marginal area of the Asian monsoon (northwest China). The main objective of this paper was to compare the records from the terminal lake and the middle and upper reaches of the basin to study the basin-wide environmental changes. During the early Holocene the vegetation was sparse, and the effective moisture was relatively low in the basin. The Holocene Climatic Optimum started between 7.0 and 8.0 cal ka BP, during which the lake level reached the highest level in the terminal lake; the vegetation density and the effective moisture reached the highest level during the Holocene in the drainage basin. From 4.7 cal ka BP the terminal lake began to shrink, while the vegetation density decreased dramatically. In the middle and upper regions of the drainage, the effective moisture began to decrease since 3.5 cal ka BP, and the arid tendency was earlier in the terminal lake than it was in the middle and upper regions of the drainage basin. During the early Holocene the relatively arid environment was affected by the gradually intensifying East Asian monsoon and the dry westerly winds. The mid-Holocene Optimum benefited from the intensive East Asian monsoon and the humid westerly winds. Then, the East Asian monsoon retreated since the late-Holocene. In the basin the arid tendency may be related to the retracting of the East Asian monsoon. However, the intensifying acidification after 1.5 cal ka BP may be correlated to the increasing dryness of the westerly winds.  相似文献   
995.
Submersed aquatic vegetation (SAV) communities have undergone declines worldwide, exposing them to invasions from non-native species. Over the past decade, the invasive species Hydrilla verticillata has been documented in several tributaries of the lower Chesapeake Bay, Virginia. We used annual aerial mapping surveys from 1998 to 2007, integrated with spatial analyses of water quality data, to analyze the patterns and rates of change of a H. verticillata-dominated SAV community and relate them to varying salinity and light conditions. Periods of declining SAV coverage corresponded to periods where salinities exceeded 7 and early growing season (April to May) Secchi depths were <0.4 m. Increases were driven by the expansion of H. verticillata along with several other species into the upper estuary, where some areas experienced an 80% increase in cover. Field investigations revealed H. verticillata dominance to be limited to the upper estuary where total suspended solid concentrations during the early growing season were <15 mg l−1 and salinity remained <3. The effect of poor early growing season water clarity on annual SAV growth highlights the importance of water quality during this critical life stage. Periods of low clarity combined with periodic salinity intrusions may limit the dominance of H. verticillata in these types of estuarine systems. This study shows the importance of the use of these types of biologically relevant episodic events to supplement seasonal habitat requirements and also provides evidence for the potential important role of invasive species in SAV community recovery.  相似文献   
996.
997.
Thirty-seven Kupferschiefer samples from southwestern Poland were analyzed by microscopy, Rock-Eval approach and instrumental neutron activation analysis to understand the geochemical and morphological characteristics of kerogen present in the samples. The analytical results indicate that there are two different types of kerogens. One type was only subjected to thermal alteration processes, and the other was further oxidized after deposition of the sediment.In the oxidized samples migrabitumen was transformed into pyrobitumen. Rock-Eval analyses show a significant decrease in HI values in the oxidized samples and an increase in OI values in relation to the samples that were not influenced by oxidation. Variations in S2 versus Corg contents indicate a change in kerogen from Type II to Type III with progressing oxidation. The presence of pyrobitumen and the depletion of hydrogen in the altered kerogen allow one to conclude that the kerogen was used as hydrogen donor for thermochemical sulfate reduction(TSR).  相似文献   
998.
Many Gulf of Mexico estuaries have low ratios of water volume to bottom surface area, and benthic processes in these systems likely have a major influence on system structure and function. The purpose of this study was to determine the spatiotemporal distribution of biomass and community composition of subtidal benthic microalgal (BMA) communities in Galveston Bay, TX, USA, compare BMA community composition and biomass to phytoplankton in overlying waters, and estimate the potential contribution of BMA to the trophodynamics in this shallow, turbid, subtropical estuary. The estimates of BMA biomass (mean = 4.21 mg Chl a m−2) for Galveston Bay were within the range of the reported values for similar Gulf of Mexico estuaries. BMA biomass in the central part of the bay was essentially homogeneous, whereas biomass at the seaward and upper bay ends of the transect were significantly lower. Peridinin, fucoxanthin, and alloxanthin were the three carotenoids with the highest concentrations, with fucoxanthin having the highest mean concentration (1.82 mg m−2). The seaward and landward ends of the transect differed from the central region of the bay with respect to the relative abundances of chlorophytes, cyanobacteria, and photosynthetic bacteria. Benthic microalgal community composition also showed a gradual shift over time due to changes in the relative abundances of photosynthetic bacteria, cryptophytes, dinoflagellates, and cyanobacteria. Major changes in community composition occurred in the spring months (March to April). On an areal basis, BMA biomass in Galveston Bay occurred at minor concentrations (16.5%) relative to phytoplankton. Furthermore, the concentrations of carotenoid pigments for phytoplankton and BMA (fucoxanthin, alloxanthin, and zeaxanthin) were correlated (r = 0.48 to 0.61), suggesting a close linkage between microalgae in the water column and sediments. The contribution of BMA to the primary productivity of the deeper waters (>2 m) of Galveston Bay is probably very small in comparison to shallower waters along the bay margins. The significant similarities in the community composition of phytoplankton and BMA illustrate the potential importance of deposition and resuspension processes in this turbid, shallow estuary.  相似文献   
999.
1000.
The EC funded Geochemical Seismic Zonation program (EEC GSZ Project 1996–1998) chose Sardinia as a low-seismicity site, in which the relationships between fluid geochemistry and seismo-tectonics had to be investigated and results compared with outcomes from other selected high-seismicity sites. A first article, examining the role of fault segmentation and seismic quiescence on the geochemical composition of groundwaters and gases, has already been presented (Angelone et al. 2005). This article deals with environmental isotopes which, together with selected hydrochemical data, give hints on tectonically-related fluid circulations. Four water-dominated hydrothermal systems were considered, all located along regional fault systems and discharging groundwaters belonging to the Na–HCO3 and Na–Cl facies. In the considered systems, groundwater circulation takes place, principally, in the Palaeozoic Crystalline Basement (PCB), with the exception of the Logudoro system, where hydrological circuits develop in the Mesozoic Carbonate Platform (MCP). The high CO2 contents, the non-attainment of fluid-rock equilibrium and the large lithological variability prevent the construction of a unique hydrogeological–geochemical conceptual model. In this case, stable isotopes provide a useful tool to describe the origin of fluids and their subterranean movements. Stable isotopes of water, integrated with hydrochemical data, indicate that fluids are derived from three main end members. The dominant component is a relatively recent local meteoric water; the second one is marine water; and the third one is a fossil freshwater, depleted in heavy isotopes with respect to modern rains. The latter end member entered the aquifer system in the past, when climatic conditions were greatly different from today. At least two circulation systems can be recognised, namely a shallow cold system and a deep hydrothermal system, as well as two distinct hydrological processes: (1) gravity-controlled descent of cold water towards greater depths and (2) convection linked to a thermal gradient, causing deep fluids to rise up from the hydrothermal reservoir towards the surface. The highly variable δ13CTDIC values suggest the presence of two distinct CO2 sources, namely, a biogenic one and a thermogenic one. The relation between the isotopic compositions of CO2 and He indicates an increased mantle signature in uprising CO2-rich fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号