首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
  国内免费   1篇
大气科学   5篇
地球物理   27篇
地质学   26篇
天文学   26篇
自然地理   12篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2011年   6篇
  2010年   3篇
  2009年   9篇
  2008年   10篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
排序方式: 共有96条查询结果,搜索用时 22 毫秒
91.
The uncertainty of the spectral transmission function due to the nonsphericity of cosmic dust particles is analysed for optically thick C-rich and O-rich dust shells. The transmission function directly prescribes the intensity of radiation that passes through a dust shell. It is shown that nonspherical particles affect the stellar spectra in a different way than a system of equally sized spherical particles. Discrepancies in the stellar spectra for both morphological models (spheres and irregular targets) grow with optical thickness of the dust shell and the spectral behaviour of the optical thickness depends on the particle size distribution function. In particular, two most frequently used distrubutions, a power law and Dirac’s delta function, are considered in the presented numerical runs. Light transmission through C-rich dust shells is strongly influenced by absorption which dominates in case of carbonaceous particles. Irregularly shaped carbonaceous particles reduce the intensity of stellar spectra more efficiently than spherical particles of the same composition (the difference is about 10–30%). MgO particles which may be present in O-rich dust shells are almost pure scatterers, thus the ratio of transmission functions for irregularly shaped particles and spherical ones show specific resonant features (especially at wavelengths below 0.4 μm).  相似文献   
92.
93.
We numerically tested accuracy of two formulations of Levander's (1988) stress-imaging technique for simulating a planar free surface in the 4th-order staggered-grid finite-difference schemes. We have found that both formulations (one with normal stress-tensor components at the surface, the other with shear stress-tensor components at the surface) require at least 10 grid spacings per minimum wavelength ( min÷h = 10) if Rayleigh waves are to be propagated without significant grid dispersion in the range of epicentral distances up to 15 dom S.Because interior 4th-order staggered-grid schemes usually do not require more than 6 grid spacings per minimum wavelength, in the considered range of epicentral distances, it was desirable to find alternative techniques to simulate a planar free surface, which would not require denser spatial sampling than min÷h = 6. Therefore, we have developed and tested new techniques: 1. Combination of the stress imaging (with the shear stress-tensor components at the surface) with Rodrigues' (1993) vertically refined grid near the free surface. 2. Application of the adjusted finite-difference approximations to the z-derivatives at the grid points at and below the surface that uses no virtual values above the surface and no stress imaging. The normal stress-tensor components are at the surface in one formulation, while the shear stress-tensor components are at the surface in the other formulation.The three developed formulations give for the spatial sampling min÷h = 6 results very close to those obtained by the discrete-wavenumber method. Because, however, the technique with the vertically refined grid near the free surface requires 3 times smaller time step (due to the refined grid), the technique with adjusted finite-difference approximations is the most accurate and efficient technique from the examined formulations in the homogeneous halfspace.  相似文献   
94.
Small‐scale aerial photographs and high‐resolution satellite images, available for Ethiopia since the second half of the twentieth century as for most countries, allow only the length of gullies to be determined. Understanding the development of gully volumes therefore requires that empirical relations between gully volume (V) and length (L) are established in the field. So far, such V–L relations have been proposed for a limited number of gullies/environments and were especially developed for ephemeral gullies. In this study, V–L relations were established for permanent gullies in northern Ethiopia, having a total length of 152 km. In order to take the regional variability in environmental characteristics into account, factors that control gully cross‐sectional morphology were studied from 811 cross‐sections. This indicated that the lithology and the presence of check dams or low‐active channels were the most important controls of gully cross‐sectional shape and size. Cross‐sectional size could be fairly well predicted by their drainage area. The V–L relation for the complete dataset was V = 0 · 562 L 1·381 (n = 33, r2 = 0 · 94, with 34 · 9% of the network having check dams and/or being low‐active). Producing such relations for the different lithologies and percentages of the gully network having check dams and/or being low‐active allows historical gully development from historical remote sensing data to be assessed. In addition, gully volume was also related to its catchments area (A) and catchment slope gradient (Sc). This study demonstrates that V–L and V–A × Sc relations can be very suitable for planners to assess gully volume, but that the establishment of such relations is necessarily region‐specific. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
95.
Globules of iron-dominated (59–69 wt% FeOtot) and titanium-dominated (43.5 wt% TiO2) oxide melts have been detected in igneous xenoliths from Pliocene-to-Pleistocene alkali basalts of the Western Carpathians. Fluid inclusion and mineral composition data indicate immiscible separation of the high-iron-oxide melt (HIM) at magmatic temperatures. The HIM separation occurred during clinopyroxene (augite) accumulation in an alkali trachybasalt and continued during crystallization of amphibole (kaersutite) and K-feldspar (anorthoclase), the latter coexisting with trachyte and alkalic rhyolite residual melts. Some HIM was also expelled from sub-alkalic rhyolite (70–77% SiO2), coexisting with An27–45 plagioclase and quartz in granitic (tonalite-trondhjemite) xenoliths. Oxygen fugacities during HIM separation range from −1.4 to +0.6 log units around the QFM buffer. A close genetic relationship between HIM-hosted xenoliths and mantle-derived basaltic magma is documented by mineral 18O values ranging from 4.9 to 5.9‰ V-SMOW. δD values of gabbroic kaersutite between −61 and −86‰ V-SMOW are in agreement with a presumed primary magmatic water source. Most trace elements, except Li, Rb and Cs, have preferentially partitioned into the HIM. The HIM/Si-melt partition coefficients for transition elements (Sc, V, Cr, Co, Ni) and base metals (Zn, Cu, Mo) are between 2–160, resulting in extreme enrichment in the HIM. La and Ce also concentrate in the silicic melt, whereas Tb-Tm in the HIM. Hence, the immiscible separation causes REE fractionation and produces residual silicic melt enriched in LREE and depleted in HREE. The weak fractionation among Tb-Tm and Yb, Lu can be attributed to recurrent extraction of the HIM from the magmatic system, while flat HREE chondrite-normalized patterns are interpreted to indicate no or little loss of the HIM. Received: 30 September 1997 / Accepted: 23 March 1998  相似文献   
96.
The action of the solar electromagnetic radiation on the moving interplanetary dust particles in its more complete form than the special case known as the Poynting-Robertson effect is theoretically discussed in application to meteoroid stream of comet Encke.Normal and transversal components of the perturbing nongravitational force are used due to the action of the solar electromagnetic radiation. It is shown that the normal component of the force is negligible. However, transversal component is very important: it can probably completely explain all the observed meteoroid streams situated along the orbit of comet Encke (and, possibly, some asteroids) as the product of the comet Encke alone. Much shorter time is required for producing such a meteoroid stream than is a general conception.If the idea about the significance of the transversal component of the nongravitational force (may be, not produced by electromagnetic radiation) is correct, it may have important consequences for our understanding of ageing of comets, global evolution of the cometary (and, partially, asteroidal) system, and, of course, for a long-term evolution of small interplanetary particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号