首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26893篇
  免费   395篇
  国内免费   339篇
测绘学   771篇
大气科学   1906篇
地球物理   5189篇
地质学   9247篇
海洋学   2396篇
天文学   6609篇
综合类   60篇
自然地理   1449篇
  2022年   124篇
  2021年   218篇
  2020年   260篇
  2019年   318篇
  2018年   650篇
  2017年   638篇
  2016年   758篇
  2015年   446篇
  2014年   739篇
  2013年   1378篇
  2012年   836篇
  2011年   1099篇
  2010年   1018篇
  2009年   1321篇
  2008年   1189篇
  2007年   1211篇
  2006年   1182篇
  2005年   877篇
  2004年   881篇
  2003年   798篇
  2002年   775篇
  2001年   642篇
  2000年   673篇
  1999年   584篇
  1998年   580篇
  1997年   551篇
  1996年   413篇
  1995年   417篇
  1994年   422篇
  1993年   330篇
  1992年   332篇
  1991年   272篇
  1990年   325篇
  1989年   280篇
  1988年   260篇
  1987年   299篇
  1986年   254篇
  1985年   339篇
  1984年   368篇
  1983年   356篇
  1982年   342篇
  1981年   273篇
  1980年   290篇
  1979年   238篇
  1978年   215篇
  1977年   229篇
  1976年   195篇
  1975年   198篇
  1974年   190篇
  1973年   176篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
201.
Europa is bombarded by intense radiation that erodes the surface, launching molecules into a thin “atmosphere” representative of surface composition. In addition to atoms and molecules created in the mostly water ice surface such as H2O, O2, H2, the atmosphere is known to have species representative of trace surface materials. These trace species are carried off with the 10-104 H2O molecules ejected by each energetic heavy ion, a process we have simulated using molecular dynamics. Using the results of those simulations, we found that a neutral mass spectrometer orbiting ∼100 km above the surface could detect species with surface concentrations above ∼0.03%. We have also modeled the atmospheric spatial structure of the volatile species CO2 and SO2 under a variety of assumptions. Detections of these species with moderate time and space resolution would allow us to constrain surface composition, chemistry and to study space weathering processes.  相似文献   
202.
203.
Ganymede's grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation, finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede's grooves. However, several questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km−1 and found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km−1) and moderate strain rates (10−13 s−1). Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an order of magnitude lower than, previous linearized calculations. When strain exceeds ∼10% growth rates decrease, limiting the total amount of amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient, thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km−1). We find that the formation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may require rheological weakening or strain localization by faulting, effects not included in our analysis.  相似文献   
204.
205.
206.
Exact Bianchi type-II, VIII and IX cosmological models are obtained in a scalar tensor theory proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) with perfect fluid as a source. Some physical and geometrical properties of the models are studied. It is observed that the models are free from initial singularities and they are expanding with time.  相似文献   
207.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   
208.
In a recent paper of M. Villata, it is claimed that “antigravity appears as a prediction of general relativity when CPT is applied.” However, the present paper argues that Villata puts the cart before the horse qua methodology, and that the resulting theory cannot be reconciled with the ontological presuppositions of general relativity. The conclusion is that Villata’s suggestion for the physics that might underlie a gravitational repulsion of matter and antimatter is not acceptable as a fundamental theory in its current state of development.  相似文献   
209.
In this paper we demonstrate that the wavelength dependence of polarization degree and position angle allows us to derive the distribution of magnetic field in accretion disc. The polarized radiation arises due to scattering of emission light by electrons in a magnetized optically thick accretion disc. Faraday rotation of polarization plane is taken into consideration. Through wavelength dependence of polarization it is possible to derive the value of the magnetic Prandtl number in the accretion disc plasma. The power law index of the polarization wavelength dependence is related with the radial distribution of magnetic field in an accretion disc. This allows us to test the various models of an accretion disc around the central black hole.  相似文献   
210.
An intensive survey has been conducted of the distributions of some chemical properties (dissolved oxygen, nutrients and carbonate properties) in the Kuroshio/Oyashio Interfrontal Zone. Many low-salinity water patches were found down to depths of 640 m. Each chemical property also showed anomalies in these patches, but the degree of variation showed a low correlation with salinity. This may be due to the high variability of biological processes in the surface waters where these patches are formed. Vertical profiles of the chemical properties were also observed along the Kuroshio extension axis from 140.50°E to 146.75°E. The concentrations of nutrients and total carbonate (TC) in the water having densities greater than σθ=26.60 can be regarded as being formed by the isopycnal mixing of the Kuroshio component water and Oyashio component water and biological degradation within the density surfaces. This implies that the transport of chemical properties by the diapycnal mixing is negligible in these density layers in the K/O zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号