首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3146篇
  免费   144篇
  国内免费   63篇
测绘学   103篇
大气科学   247篇
地球物理   642篇
地质学   1149篇
海洋学   215篇
天文学   718篇
综合类   18篇
自然地理   261篇
  2022年   32篇
  2021年   61篇
  2020年   61篇
  2019年   62篇
  2018年   99篇
  2017年   99篇
  2016年   94篇
  2015年   87篇
  2014年   97篇
  2013年   164篇
  2012年   108篇
  2011年   144篇
  2010年   154篇
  2009年   191篇
  2008年   154篇
  2007年   165篇
  2006年   149篇
  2005年   98篇
  2004年   132篇
  2003年   95篇
  2002年   114篇
  2001年   77篇
  2000年   75篇
  1999年   57篇
  1998年   64篇
  1997年   40篇
  1996年   29篇
  1995年   42篇
  1994年   28篇
  1993年   20篇
  1992年   38篇
  1991年   20篇
  1990年   16篇
  1989年   20篇
  1987年   34篇
  1986年   23篇
  1985年   27篇
  1984年   37篇
  1983年   33篇
  1982年   41篇
  1981年   32篇
  1980年   31篇
  1979年   24篇
  1978年   13篇
  1977年   20篇
  1976年   19篇
  1975年   13篇
  1974年   20篇
  1973年   13篇
  1971年   11篇
排序方式: 共有3353条查询结果,搜索用时 15 毫秒
321.
The Silver Creek caldera (southern Black Mountains, western Arizona) is the source of the 18.8 Ma, >700 km3 Peach Spring Tuff (PST) supereruption, the largest eruption generated in the Colorado River Extensional Corridor (CREC) of the southwestern United States. Within and immediately surrounding the caldera is a sequence of volcanics and intrusions ranging in age from ~19 to 17 Ma. These units offer a record of magmatic processes prior to, during, and immediately following the PST eruption. To investigate the thermal evolution of the magmatic center that produced the PST, we applied a combination of Ti-in-zircon thermometry, zircon saturation thermometry, and high-precision U–Pb CA–TIMS zircon dating to representative pre- and post-supereruption volcanic and intrusive units from the caldera and its environs. Similar to intracaldera PST zircons, zircons from a pre-PST trachytic lava (19 Ma) and a post-PST caldera intrusion (18.8 Ma) yield exceptionally high-Ti concentrations (most >20 ppm, some up to nearly 60 ppm), corresponding to calculated temperatures that exceed 900 °C. In these units, Ti-in-zircon temperatures typically surpass zircon saturation temperatures (ZSTs), suggesting the entrainment of zircon that had grown in hotter environments within the magmatic system. Titanium concentrations in younger volcanic and intrusive units (~18.7–17.5 Ma) decline through time, corresponding to an average cooling rate of 10?3.5 °C/year. The ~200 k.y. thermal peak evident at Silver Creek caldera is spatially limited: elsewhere in the Miocene record of the northern CREC, Ti-in-zircon concentrations and ZSTs are much lower, suggesting that felsic magmas were generally substantially cooler.  相似文献   
322.
Mangakino, the oldest rhyolitic caldera centre delineated in the Taupo Volcanic Zone of New Zealand, generated two very large (super-sized) ignimbrite eruptions, the 1.21 ± 0.04 Ma >500 km3 Ongatiti and ~1.0 Ma ~1,200 km3 Kidnappers events, the latter of which was followed after a short period of erosion by the ~200 km3 Rocky Hill eruption. We present U/Pb ages and trace-element analyses on zircons from pumice clasts from these three eruptions by Secondary Ion Mass Spectrometry (SIMS) using SHRIMP-RG instruments to illustrate the evolution of the respective magmatic systems. U–Pb age spectra from the Ongatiti imply growth of the magmatic system over ~250 kyr, with a peak of crystallisation around 1.32 Ma, ~100 kyr prior to eruption. The zircons are inferred to have then remained stable in a mush with little crystallisation and/or dissolution before later rejuvenation of the system at the lead-in to eruption. The paired Kidnappers and Rocky Hill eruptions have U–Pb zircon ages and geochemical signatures that suggest they were products of a common system grown over ~200 kyr. The Kidnappers and Rocky Hill samples show similar weakly bimodal age spectra, with peaks at 1.1 and 1.0 Ma, suggesting that an inherited antecrystic population was augmented by crystals grown at ages within uncertainty of the eruption age. In the Kidnappers, this younger age peak is dominantly seen in needle-shaped low U grains with aspect ratios of up to 18. In all three deposits, zircon cores show larger ranges and higher absolute concentrations of trace elements than zircon rims, consistent with zircon crystallisation from evolving melts undergoing crystal fractionation involving plagioclase and amphibole. Abundances and ratios of many trace elements frequently show variations between different sectors within single grains, even where there is no visible sector zoning in cathodoluminescence (CL) imaging. Substitution mechanisms, as reflected in the molar (Sc + Y + REE3+)/P ratio, differ in the same growth zone between the sides (along a-axis and b-axis: values approaching 1.0) and tips (c-axis: values between 1.5 and 5.0) of single crystals. These observations have implications for the use of zircons for tracking magmatic processes, particularly in techniques where CL zonation within crystals is not assessed and small analytical spot sizes cannot be achieved. These observations also limit applicability of the widely used Ti-in-zircon thermometer. The age spectra for the Ongatiti and Kidnappers/Rocky Hill samples indicate that both magmatic systems were newly built in the time-breaks after respective previous large eruptions from Mangakino. Trace element variations defining three-component mixing suggest that zircons, sourced from multiple melts, contributed to the population in each system.  相似文献   
323.
This paper discusses the results of the investigation of Pleistocene sediments at the Royal Oak Portal (ROP) site on the new Crossrail scheme near Paddington Station, London. The site was sampled and recorded in May 2011 by archaeologists from Oxford Archaeology commissioned by Crossrail Ltd. The investigation revealed a sedimentary sequence associated with cool climate waterlain deposition towards the edge of the River Westbourne floodplain. During excavation an assemblage of around 100 identifiable large mammal bones was recovered, dating to the Late Pleistocene. The major concentration of bones, from bison and reindeer, was located and excavated from a shallow sequence of sediments. Analysis of the bones indicates that they represent a natural death assemblage, scavenged and subsequently disarticulated, transported by water, exposed and further dispersed and broken by trampling. The site is of regional and national importance because the assemblage derives from a well-constrained geological context, with associated dating evidence suggesting accumulation during the later parts of Marine Isotope Stage (MIS) 5 and continuing within MIS 4. The site is also of significance because it is one of a growing number of recently discovered sites away from the main fluvial archive for the British Middle and Upper Pleistocene. These sites have the potential to add significantly to our understanding of parts of the Pleistocene record that remain difficult to document through the investigation of the more active systems associated with major rivers such as the Thames, Severn or Trent.  相似文献   
324.
325.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   
326.
We present profiles of the line-of-sight (l.o.s.) ionospheric wind velocities in the southern auroral/polar region of Saturn. Our velocities are derived from the measurement of Doppler shifting of the H3+ν2Q(1,0) line at 3.953 microns. The data for this study were obtained using the facility high-resolution spectrometer CSHELL on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, during the night of February 6, 2003 (UT). The l.o.s. velocity profiles finally derived are consistent with an extended region of the upper atmosphere sub-corotating with the planet: the ion velocities in the inertial reference are only 1/3 of those expected for full planetary corotation. We discuss the results in the light of recent proposals for the kronian magnetosphere, and suggest that, in this region, Saturn's ion winds may be under solar wind control.  相似文献   
327.
328.
329.
The Cassini spacecraft encountered Jupiter in late 2000. Within more than 1 AU of the gas giant the Cosmic Dust Analyser onboard the spacecraft recorded the first ever mass spectra of jovian stream particles. To determine the chemical composition of particles, a comprehensive statistical analysis of the dataset was performed. Our results imply that the vast majority (>95%) of the observed stream particles originate from the volcanic active jovian satellite Io from where they are sprinkled out far into the Solar System. Sodium chloride (NaCl) was identified as the major particle constituent, accompanied by sulphurous as well as potassium bearing components. This is in contrast to observations of gas in the ionian atmosphere, its co-rotating plasma torus, and the neutral cloud, where sulphur species are dominant while alkali and chlorine species are only minor components. Io has the largest active volcanoes of the Solar System with plumes reaching heights of more than 400 km above the moons surface. Our in situ measurements indicate that alkaline salt condensation of volcanic gases inside those plumes could be the dominant formation process for particles reaching the ionian exosphere.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号