首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   19篇
  国内免费   6篇
测绘学   16篇
大气科学   53篇
地球物理   123篇
地质学   124篇
海洋学   55篇
天文学   46篇
综合类   7篇
自然地理   26篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   15篇
  2017年   18篇
  2016年   21篇
  2015年   22篇
  2014年   17篇
  2013年   28篇
  2012年   16篇
  2011年   40篇
  2010年   28篇
  2009年   20篇
  2008年   24篇
  2007年   20篇
  2006年   17篇
  2005年   17篇
  2004年   11篇
  2003年   10篇
  2002年   8篇
  2001年   11篇
  2000年   2篇
  1999年   11篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   10篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1984年   4篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1962年   1篇
  1952年   1篇
排序方式: 共有450条查询结果,搜索用时 15 毫秒
131.
Quaternions and the rotation of a rigid body   总被引:1,自引:0,他引:1  
The orientation of an arbitrary rigid body is specified in terms of a quaternion based upon a set of four Euler parameters. A corresponding set of four generalized angular momentum variables is derived (another quaternion) and then used to replace the usual three-component angular velocity vector to specify the rate by which the orientation of the body with respect to an inertial frame changes. The use of these two quaternions, coordinates and conjugate moments, naturally leads to a formulation of rigid-body rotational dynamics in terms of a system of eight coupled first-order differential equations involving the four Euler parameters and the four conjugate momenta. The equations are formally simple, easy to handle and free of singularities. Furthermore, integration is fast, since only arithmetic operations are involved.  相似文献   
132.
Song  Danqing  Liu  Xiaoli  Li  Bin  Zhang  Jianmin  Bastos  Juan Jose Volcan 《Acta Geotechnica》2021,16(4):1281-1302
Acta Geotechnica - To investigate the influence of a rapid water drawdown (RWD) on the seismic response characteristics of reservoir rock slopes, numerical dynamic analyses and shaking table tests...  相似文献   
133.
During transition from open pit extractions to underground mining of an orebody, often both the open pit and the underground workings operate simultaneously, before the former is closed. To avoid the risk of inundation, the underground workings connecting or driven closer to the open pit are isolated using bulkheads. In this paper, the authors reviewed some of the theoretical equations and norms followed worldwide for determining the safe dimensions of a bulkhead to withstand water pressure. It is found that the theoretical equations are insufficient to represent the actual mode of failure and the ultimate pressure–bearing capacity of a bulkhead, as they were developed based on only one mode of failure of the dam construction material. For better representation of the bulkhead failure and its strength determination, it is found prudent to conduct strain-softening numerical modeling simulating a real mining scenario. Mode of dam failure and effect of parameters such as dam thickness and roadway dimensions on the ultimate pressure–bearing capacity of an arched bulkhead are studied. Numerical modeling studies show that the failure initiates with tensile cracking of the dam surface, but the bulkhead ultimately fails in a combination of tension and shear yielding. On comparison, it is found that the tensile failure theories underestimate the pressure-bearing capacity of a dam, while the shear strength– and crushing strength–based equations overestimate the same. Further, an application of the numerical modeling technique for design of water-retaining dams at an underground mine for its safe isolation from the open pit is presented.  相似文献   
134.
The coast of California was significantly impacted by two recent teletsunami events, one originating off the coast of Chile on February 27, 2010 and the other off Japan on March 11, 2011. These tsunamis caused extensive inundation and damage along the coast of their respective source regions. For the 2010 tsunami, the NOAA West Coast/Alaska Tsunami Warning Center issued a state-wide Tsunami Advisory based on forecasted tsunami amplitudes ranging from 0.18 to 1.43 m with the highest amplitudes predicted for central and southern California. For the 2011 tsunami, a Tsunami Warning was issued north of Point Conception and a Tsunami Advisory south of that location, with forecasted amplitudes ranging from 0.3 to 2.5 m, the highest expected for Crescent City. Because both teletsunamis arrived during low tide, the potential for significant inundation of dry land was greatly reduced during both events. However, both events created rapid water-level fluctuations and strong currents within harbors and along beaches, causing extensive damage in a number of harbors and challenging emergency managers in coastal jurisdictions. Field personnel were deployed prior to each tsunami to observe and measure physical effects at the coast. Post-event survey teams and questionnaires were used to gather information from both a physical effects and emergency response perspective. During the 2010 tsunami, a maximum tsunami amplitude of 1.2 m was observed at Pismo Beach, and over $3-million worth of damage to boats and docks occurred in nearly a dozen harbors, most significantly in Santa Cruz, Ventura, Mission Bay, and northern Shelter Island in San Diego Bay. During the 2011 tsunami, the maximum amplitude was measured at 2.47 m in Crescent City Harbor with over $50-million in damage to two dozen harbors. Those most significantly affected were Crescent City, Noyo River, Santa Cruz, Moss Landing, and southern Shelter Island. During both events, people on docks and near the ocean became at risk to injury with one fatality occurring during the 2011 tsunami at the mouth of the Klamath River. Evaluations of maximum forecasted tsunami amplitudes indicate that the average percent error was 38 and 28 % for the 2010 and 2011 events, respectively. Due to these recent events, the California tsunami program is developing products that will help: (1) the maritime community better understand tsunami hazards within their harbors, as well as if and where boats should go offshore to be safe, and (2) emergency managers develop evacuation plans for relatively small “Warning” level events where extensive evacuation is not required. Because tsunami-induced currents were responsible for most of the damage in these two events, modeled current velocity estimates should be incorporated into future forecast products from the warning centers.  相似文献   
135.
136.
137.
138.
In weather forecasting, current and past observational data are routinely assimilated into numerical simulations to produce ensemble forecasts of future events in a process termed “model steering”. Here we describe a similar approach that is motivated by analyses of previous forecasts of the Working Group on California Earthquake Probabilities (WGCEP). Our approach is adapted to the problem of earthquake forecasting using topologically realistic numerical simulations for the strike-slip fault system in California. By systematically comparing simulation data to observed paleoseismic data, a series of spatial probability density functions (PDFs) can be computed that describe the probable locations of future large earthquakes. We develop this approach and show examples of PDFs associated with magnitude M > 6.5 and M > 7.0 earthquakes in California.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号