首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9142篇
  免费   1440篇
  国内免费   49篇
测绘学   254篇
大气科学   523篇
地球物理   4094篇
地质学   3350篇
海洋学   542篇
天文学   1313篇
综合类   38篇
自然地理   517篇
  2022年   51篇
  2021年   160篇
  2020年   189篇
  2019年   294篇
  2018年   425篇
  2017年   512篇
  2016年   666篇
  2015年   599篇
  2014年   671篇
  2013年   856篇
  2012年   641篇
  2011年   641篇
  2010年   534篇
  2009年   461篇
  2008年   462篇
  2007年   346篇
  2006年   308篇
  2005年   246篇
  2004年   245篇
  2003年   237篇
  2002年   216篇
  2001年   190篇
  2000年   161篇
  1999年   83篇
  1998年   93篇
  1997年   71篇
  1996年   43篇
  1995年   51篇
  1994年   58篇
  1993年   44篇
  1992年   48篇
  1991年   61篇
  1990年   67篇
  1989年   48篇
  1987年   39篇
  1986年   41篇
  1985年   36篇
  1984年   47篇
  1983年   39篇
  1982年   38篇
  1981年   34篇
  1980年   31篇
  1979年   41篇
  1978年   29篇
  1977年   31篇
  1976年   33篇
  1975年   31篇
  1974年   31篇
  1973年   40篇
  1971年   38篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
231.
The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.  相似文献   
232.
Exceptional rainfall events cause significant losses of soil, although few studies have addressed the validation of model predictions at field scale during severe erosive episodes. In this study, we evaluate the predictive ability of the enhanced Soil Erosion and Redistribution Tool (SERT‐2014) model for mapping and quantifying soil erosion during the exceptional rainfall event (~235 mm) that affected the Central Spanish Pyrenees in October 2012. The capacity of the simulation model is evaluated in a fallow cereal field (1.9 ha) at a high spatial scale (1 × 1 m). Validation was performed with field‐quantified rates of soil loss in the rills and ephemeral gullies and also with a detailed map of soil redistribution. The SERT‐2014 model was run for the six rainfall sub‐events that made up the exceptional event, simulating the different hydrological responses of soils with maximum runoff depths ranging between 40 and 1017 mm. Predicted average and maximum soil erosion was 11 and 117 Mg ha?1 event?1, respectively. Total soil loss and sediment yield to the La Reina gully amounted to 16.3 and 9.0 Mg event?1. These rates are in agreement with field estimations of soil loss of 20.0 Mg event?1. Most soil loss (86%) occurred during the first sub‐event. Although soil accumulation was overestimated in the first sub‐event because of the large amount of detached soil, the enhanced SERT‐2014 model successfully predicted the different spatial patterns and values of soil redistribution for each sub‐event. Further research should focus on stream transport capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
233.
A finite element formulation is proposed and implemented for analysing the stability of excavated wells using the DiMaggio-Sandler constitutive elastoplastic model with a typical carbonate reservoir configuration. The quality of the finite element approximation is ensured by applying smooth curved elements adapted to the wellbore geometry, and hp adaptive finite element meshes in the plastic zone. General purpose procedures are defined to transfer the elastoplastic deformation history to newly created integration points. A breakout damage criterion is proposed based on the second invariant of the deviatoric plastic deformation tensor. This damage criterion is used to apply a mesh movement algorithm to represent material collapse. The automatic successive application of the breakout damage criterion results in elliptical realistically looking geometries obtained in experiments reported in the literature.  相似文献   
234.
235.
236.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
237.
Previous work on three‐dimensional shakedown analysis of cohesive‐frictional materials under moving surface loads has been entirely for isotropic materials. As a result, the effects of anisotropy, both elastic and plastic, of soil and pavement materials are ignored. This paper will, for the first time, develop three‐dimensional shakedown solutions to allow for the variation of elastic and plastic material properties with direction. Melan's lower‐bound shakedown theorem is used to derive shakedown solutions. In particular, a generalised, anisotropic Mohr–Coulomb yield criterion and cross‐anisotropic elastic stress fields are utilised to develop anisotropic shakedown solutions. It is found that shakedown solutions for anisotropic materials are dominated by Young's modulus ratio for the cases of subsurface failure and by shear modulus ratio for the cases of surface failure. Plastic anisotropy is mainly controlled by material cohesion ratio, the rise of which increases the shakedown limit until a maximum value is reached. The anisotropic shakedown limit varies with frictional coefficient, and the peak value may not occur for the case of normal loading only. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
238.
A new elastoplastic model called loading memory surface based on the critical state concept and the multi‐surface framework is proposed for geomaterials. The model uses a hypoelastic formulation and two plastic mechanisms. The formulations of the model are made in three‐dimensional stress–strain space and work under both monotonic and cyclic loadings. A newly introduced formalism makes it possible to obtain the cyclic response directly from the monotonic loading one. This formalism gives a three‐dimensional generalization of the well‐known Masing rule. The model has been validated against test results of Hostun sand under several conditions: monotonic and cyclic, drained and undrained, tests in compression and in extension, and at different confining pressures and different densities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
239.
240.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号