首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12103篇
  免费   836篇
  国内免费   196篇
测绘学   568篇
大气科学   1068篇
地球物理   3764篇
地质学   4575篇
海洋学   796篇
天文学   1510篇
综合类   228篇
自然地理   626篇
  2023年   28篇
  2022年   64篇
  2021年   149篇
  2020年   159篇
  2019年   141篇
  2018年   707篇
  2017年   643篇
  2016年   643篇
  2015年   463篇
  2014年   484篇
  2013年   628篇
  2012年   989篇
  2011年   858篇
  2010年   478篇
  2009年   563篇
  2008年   478篇
  2007年   350篇
  2006年   385篇
  2005年   1045篇
  2004年   1050篇
  2003年   814篇
  2002年   348篇
  2001年   195篇
  2000年   152篇
  1999年   114篇
  1998年   117篇
  1997年   106篇
  1996年   64篇
  1995年   56篇
  1994年   62篇
  1993年   35篇
  1992年   49篇
  1991年   55篇
  1990年   57篇
  1989年   37篇
  1988年   28篇
  1987年   35篇
  1986年   21篇
  1985年   38篇
  1984年   29篇
  1983年   46篇
  1982年   26篇
  1981年   23篇
  1980年   29篇
  1979年   31篇
  1978年   21篇
  1977年   17篇
  1975年   25篇
  1973年   23篇
  1972年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Crustal xenoliths in the 1961 andesite flow of Calbuco Volcano, in the southern Southern Volcanic Zone (SSVZ) of the Andes, consist predominantly of pyroxene granulites and hornblende gabbronorites. The granulites contain plagioclase+pyroxene+magnetite±amphibole, and have pronounced granoblastic textures. Small amounts of relict amphibole surrounded by pyroxene-plagioclase-magnetite-glass symplectites are found in some specimens. These and similar textures in the gabbronorites are interpreted as evidence of dehydration melting. Mineral and bulk rock geochemical data indicate that the granulites are derived from an incompatible trace element depleted basaltic protolith that underwent two stages of metamorphism: a moderate pressure, high temperature stage accompanied by melting and melt extraction from some samples, followed by thermal metamorphism after entrainment in the Calbuco andesite lavas. High Nd T values (+4.0 to +8.6), Nd-isotope model ages of 1.7–2.0 Ga, and trace element characteristics like chondrite normalized La/Yb< and La/Nb1 indicate that the protoliths were oceanic basalts. Similar oceanic metabasalts of greenschist to amphibolite facies are found in the Paleozoic metamorphic belt that underlies the Chilean coastal ranges. Mineral and bulk rock compositions of the gabbronorite xenoliths indicate that they are cognate, crystallizing from the basaltic andesite magma at Calbuco. Crystallization pressures for the gabbros based on total Al contents in amphibole are 6–8 kbar. These pressures point to middle to lower crustal storage of the Calbuco magma. Neither granulite nor gabbro xenoliths have the appropriate geochemical characteristics to be contaminants of Calbuco andesites, although an ancient sedimentary contaminant is indicated by the lava compositions. The presence of oceanic metabasaltic xenoliths, together with the sedimentary isotopic imprint, suggests that the lower crust beneath the volcano is analogous to the coastal metamorphic belt, which is an accretionary complex of intercalated basalts and sediments that formed along the Paleozoic Gondwanan margin. If this is the case, the geochemical composition of the lower and middle crust beneath the SSVZ is significantly different from that of most recent SSVZ volcanic rocks.  相似文献   
12.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some fast-track dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the G. Colombo fellowships of the European Space Agency.  相似文献   
13.
The discrepancy between the overhead E-region current and the magnetic D-component is studied using data obtained by the Chatanika incoherent scatter radar (L = 5.6). The F-region horizontal current is estimated to be too small to cause the observed D-deflection. Also, the assumption that the magnetic effects of the Pedersen and field-aligned currents cancel each other on the ground is shown to be inadequate to solve the problem. The significance of the inclination angle in the data analysis and the importance of the field-aligned current sheets are discussed.  相似文献   
14.
The composition of the impact plasma produced by fast dust particles (v > 1 km/sec) hitting an Au or W target was measured both with a model of the HELIOS micrometeoroid experiment (low electric field at the target) and a high field detector. The plasma composition and the total plasma charge depend strongly on the impact velocity and the electric field strength at the target. Spectra of 9 different projectile-target combinations were analysed. Two types of spectra could be observed, depending on the projectile material. (1) Spectra of metals and hard dielectrics (Mohs' hardness ? 5). Particle constituents of low ionisation energy (e · u ? 7eV, e.g. Na, K, Al) dominate the spectra of these materials at impact velocities below 10 km/sec. At higher speed the relative intensities change and new ions with higher ionisation energies appear. (2) Spectra of soft dielectrics (Mohs' hardness < 3). Below 9 km/sec these materials produced less total charge than did the others. The highest masses were detected at 74 amu. The relative abundance of ions with low ionization energies such as Li, Na, K, etc. is comparatively small. Negative ions were also observed in the impact plasma. Their total number was found to be approximately 3–6% of that of the positive ions at 6 km/sec particle speed.  相似文献   
15.
By use of known published values forT eff, logg, andM v, a check on our procedure for determining the physical parameters of A v-type stars from Strömgren photometry has been performed. External errors for our calculated physical parameters have been obtained.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
16.
Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere throughin situ measurements. The pseudo-plasma formalism, which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important.In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well pinch the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together.Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of dust (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A stellesimal accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed in Part I logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems.  相似文献   
17.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   
18.
The geologic origin of subhorizontal reflections, often observed in crustal seismic sections, was investigated by establishing metamorphic facies and strength of rocks in depth, and correlating these properties to seismic reflection sections from eastern Hungary. Estimation of the depths of metamorphic mineral stability zones utilized the principles developed by Fyfe et al. and known geothermal data of the area. The strength versus depth profile was derived by relating local seismic P -wave interval velocities to Meissner et al. 's activation energy. The results show that the series of subhorizontal reflections, observed in the Pannonian Basin, are a consequence of combined metamorphic and rheologic changes in depths. The synthesis of the integrated data set suggests that the retrograde alteration of the pre-Tertiary basement above the percolation threshold was made possible by the softening effect of shear zones and their water-conducting capacity. The subhorizontal reflections of highest energy, of the consolidated crust below the percolation threshold, originate in the depths of greenschist, amphibolite and granulite metamorphic mineral facies, which were formed in geothermal and pressure conditions similar to those existing today. These results imply the overprint of earlier (Variscan) metamorphic sequences of the crust by more recent retrograde metamorphic processes.  相似文献   
19.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
20.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号