首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2373篇
  免费   167篇
  国内免费   17篇
测绘学   84篇
大气科学   212篇
地球物理   736篇
地质学   904篇
海洋学   185篇
天文学   289篇
综合类   24篇
自然地理   123篇
  2023年   7篇
  2022年   22篇
  2021年   57篇
  2020年   56篇
  2019年   50篇
  2018年   98篇
  2017年   107篇
  2016年   146篇
  2015年   133篇
  2014年   135篇
  2013年   219篇
  2012年   169篇
  2011年   166篇
  2010年   132篇
  2009年   134篇
  2008年   112篇
  2007年   72篇
  2006年   80篇
  2005年   51篇
  2004年   52篇
  2003年   55篇
  2002年   57篇
  2001年   37篇
  2000年   26篇
  1999年   25篇
  1998年   21篇
  1997年   20篇
  1996年   12篇
  1995年   25篇
  1994年   13篇
  1993年   11篇
  1992年   9篇
  1991年   24篇
  1990年   13篇
  1989年   11篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1984年   18篇
  1983年   14篇
  1982年   10篇
  1981年   9篇
  1980年   7篇
  1979年   17篇
  1977年   6篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1973年   11篇
  1969年   7篇
排序方式: 共有2557条查询结果,搜索用时 31 毫秒
31.
Multi-equilibrium thermobarometry shows that low-grade metapelites (Cubito-Moura schists) from the Ossa–Morena Zone underwent HP–LT metamorphism from 340–370 °C at 1.0–0.9 GPa to 400–450 °C at 0.8–0.7 GPa. These HP–LT equilibriums were reached by parageneses including white K mica, chlorite and chloritoid, which define the earliest schistosity (S1) in these rocks. The main foliation in the schists is a crenulation cleavage (S2), which developed during decompression from 0.8–0.7 to 0.4–0.3 GPa at increasing temperatures from 400–450 °C to 440–465 °C. Fe3+ in chlorite decreased greatly during prograde metamorphism from molar fractions of 0.4 determined in syn-S1 chlorites down to 0.1 in syn-S2 chlorites. These new data add to previous findings of eclogites in the Moura schists indicating that a pile of allochtonous rocks situated next to the Beja-Acebuches oceanic amphibolites underwent HP–LT metamorphism during the Variscan orogeny. To cite this article: G. Booth-Rea et al., C. R. Geoscience 338 (2006).  相似文献   
32.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   
33.
Significant intrusion of geothermal water into fresh groundwater takes place in the Puebla Valley aquifer system, Mexico. The decline in the potentiometric surface due to the overexploitation of the groundwater induces this intrusion. This hydrological system comprises three aquifers located in Plio-Quaternary volcanic sediments and Mesozoic calcareous rocks. The hydraulic balance of the aquifer shows that the annual output exceeds the natural inputs by 12 million m3. Between 1973 and 2002, a drop in the potentiometric surface, with an 80 m cone of depression, was identified in a 5-km-wide area located southwest of the city of Puebla. Chemical analyses performed on water samples since 1990 have shown an increase in total dissolved solids (TDS) of more than 500 mg/L, coinciding with the region showing a cone of depression in the potentiometric surface. A three-dimensional flow and transport model, based on the hydrogeological and geophysical studies, was computed by using the MODFLOW and MT3D software. This model reproduces the evolution of the aquifer system during the last 30 years and predicts for 2010 an additional drawdown in the potentiometric surface of 15 m, and an increase in the geothermal water intrusion.  相似文献   
34.
Thermal expansion differences between minerals within rocks under insolation have previously been assumed to drive breakdown by means of granular disaggregation. However, there have been no definitive demonstrations of the efficacy of this weathering mechanism. Different surface temperatures between minerals should magnify thermal expansion differences, and thus subject adjacent minerals to repeated stresses that might cause breakdown through fatigue failure. This work confirms the existence of surface temperature differences between minerals in granitic rocks under simulated short-term temperature fluctuations so as to discriminate their potential for initiating granular disaggregation. The influence of colour, as a surrogate for albedo, and crystal size, as a function of thermal mass are specifically identified because of their ease of quantification. Four rock types with a range of these properties were examined, and subjected to repeated short-term temperature cycles by radiative heating and cooling under laboratory conditions. Results show that while albedo is the main control for overall and individual maximum temperatures, crystal size is the main factor controlling higher temperature differences between minerals. Thus, stones with large differences of mineral sizes can undergo magnified stresses due to thermal expansion differences.  相似文献   
35.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
36.
A two-dimensional global climate model is used to assessthe climatic changes associated with the new IPCC SRES emissions scenarios and to determine which kind of changes in total solar irradiance and volcanic perturbations could mask the projected anthropogenic global warming associated to the SRES scenarios. Our results suggest that only extremely unlikely changes in total solar irradiance and/or volcanic eruptions would be able to overcome the simulated anthropogenic global warming over the century. Nevertheless, in the critical interval of the next two decades the externally-driven natural climate variability might possibly confuse the debate about temperature trends and impede detection of the anthropogenic climate change signal.  相似文献   
37.
Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico   总被引:1,自引:0,他引:1  
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7–10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Electronic Publication  相似文献   
38.
. Groundwater sampling and geophysical methods determined a serious contamination problem associated with refilled exploitation sites at the Cal Dimoni area, Llobregat delta, Barcelona, Spain. To characterise this process, hydrogeochemical analyses were performed and showed the following modifications to groundwater chemical composition: increasing pH values, changing redox conditions, significant increases in total organic carbon (TOC) and certain trace elements, and high groundwater conductivity values. Major ion content accumulations were found under the refilled area. In contrast, elements involved in the oxidation–reduction processes, such as iron, manganese and nitrates, clearly diminished. Electromagnetic prospecting methods were also performed and delineated the contamination plume extent. These methods also showed separate sources of contamination, one clearly related to the groundwater–refilled zone leachate interaction, another as a consequence of the manure–accumulation surface site. Geochemical and geophysical methods have shown similar results for locating groundwater contamination sources, and for determining leachate generation mechanisms and flow paths.  相似文献   
39.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   
40.
This paper develops mass fraction models for transport and fate of agricultural pollutants in structured two-region soils. Mass fraction index models, based on a semi-infinite domain solution, are derived that describe leaching at depth, vapor losses through soil surface, absorption, and degradation in the dynamic- and stagnant-water soil regions. The models predict that leaching is the result of the combined effect of the upward vapor-phase transport relative to downward advection, residence time relative to half-life, dispersion, and lateral diffusive mass transfer. Simulations show that leached fraction of volatile compounds does not always decrease monotonically with increased residence time relative to the pollutant half-life, as a result of complex interactions among the different physical and biochemical processes. The results show that leaching, volatilization, and degradation losses can be affected significantly by lateral diffusive mass transfer into immobile-water regions and advection relative to dispersion (i.e. Peclet number) in the mobile-water regions. It is shown that solute diffusion into the immobile phase and subsequent biochemical decay reduces leaching and vapor losses through soil surface. Potential use of the modified leaching index for the screening of selected pesticides is illustrated for different soil textures and infiltration rates. The analysis may be useful to the management of pesticides and the design of landfills.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号