The Middle Berriasian deposits of the Jura platform in Switzerland and France have already been well studied in terms of high-resolution
sequence stratigraphy and different orders of depositional sequences (large-, medium-, and small-scale) have been defined.
The hierarchical stacking pattern of the sequences and the time span represented by the investigated interval imply that sea-level
fluctuations in the Milankovitch frequency band as well as differential subsidence caused the observed changes of accommodation
on the Jura platform. The present study focuses on three small-scale sequences within the transgressive interval of a large-scale
sequence. The initial flooding of the platform is marked by a facies change from supra- and intertidal (Goldberg Formation)
to shallow-marine subtidal deposits (Pierre Chatel Formation). Detailed logging and facies analysis of 11 sections allow recognizing
small environmental changes that define elementary sequences within the well-established small-scale sequences and distinguishing
between autocyclic and allocyclic processes in sequence formation. It is concluded that the small-scale sequences correspond
to the 100-ka orbital eccentricity cycle, while allocyclic elementary sequences formed in tune with the 20-ka precession cycle.
Based on the correlation of elementary and small-scale sequences it can be shown that the Jura platform has been flooded stepwise
by repeated transgressive pulses. Differential subsidence and pre-existing platform morphology further controlled sediment
accumulation and distribution during the transgression. The combination of high-resolution sequence stratigraphy and cyclostratigraphy
then enables the reconstruction of hypothetical palaeogeographic maps in time increments of a few ten thousand years. 相似文献
This work provides five new U–Pb zircon dating and the corresponding Nd isotope data for felsic granulites from the south Itabuna-Salvador-Curaçá Block (ISCB), in the São Francisco Craton, Brazil. Three major sets of felsic granulites can be recognised. The oldest set is tonalitic in composition and of TTG affinity. It is Archaean in age with magmatic zircon cores dated at 2675 ± 11 Ma by LA-ICPMS and up to ca 2.7–2.9 Ga by SHRIMP on an other sample. It exhibits epsilon Nd values between ?8 and ?11 at 2.1 Ga. This Nd signature is similar to that of granulites found in the western Archaean Jequié Block. Cartographically, this set of Archaean terrains represents at least 50% of the granulites in the studied area. The second set corresponds to a Palaeoproterozoic calc-alkaline tonalitic suite with zircon ages from 2019 ± 19 Ma to 2191 ± 10 Ma and epsilon Nd values between ?3 and ?4 at 2.1 Ga, corresponding partially to a newly formed crust. The third set of granulites is also Palaeoproterozoic. It is shoshonitic to monzonitic in composition and synchronous with the high grade metamorphism dated by metamorphic zircons at 2086 ± 7 Ma (average of five samples). The Nd isotope signature for this alkaline set is similar to that of the Palaeoproterozoic calc-alkaline one. Nd isotopes appear to be a very efficient tool to distinguish Archaean from Palaeoproterozoic felsic protoliths in granulitic suites of the Itabuna-Salvador-Curaçá Block (ISCB). Finally, the southern part of the ISCB is composed of a mixture of Archaean and Palaeoproterozoic protoliths, in similar amounts, suggesting that it was probably an active margin between 2.1 and 2.2 Ga located on the eastern border of the Archaean Jequié Block. A major crustal thickening process occurred at ca 2.09 Ga in the ISCB and seems significantly younger towards the west, in the Jequié granulites, where an average of 2056 ± 9 Ma is determined for the high grade event. 相似文献
The formation of the supercontinent Pangaea during the Permo–Triassic gave rise to an extreme monsoonal climate (often termed ‘mega-monsoon’) that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2·4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red–green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus. 相似文献
International Journal of Earth Sciences - The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in... 相似文献
To cope with water scarcity in drylands, stormwater is often collected in surface basins and subsequently stored in shallow aquifers via infiltration. These stormwater harvesting systems are often accompanied by high evaporation rates and hygiene problems. This is commonly a consequence of low infiltration rates, which are caused by clogging layers that form on top of the soil profile and the presence of a thick vadose zone. The present study aims to develop a conceptual solution to increase groundwater recharge rates in stormwater harvesting systems. The efficiency of vadose-zone wells and infiltration trenches is tested using analytical equations, numerical models, and sensitivity analyses. Dams built in the channel of ephemeral streams (wadis) are selected as a study case to construct the numerical simulations. The modelling demonstrated that vadose-zone wells and infiltration trenches contribute to effective bypassing of the clogging layer. By implementing these solutions, recharge begins 2250–8100% faster than via infiltration from the bed surface of the wadi reservoir. The sensitivity analysis showed that the recharge rates are especially responsive to well length and trench depth. In terms of recharge quantity, the well had the best performance; it can infiltrate up to 1642% more water than the reservoir, and between 336 and 825% more than the trench. Moreover, the well can yield the highest cumulative recharge per dollar and high recharge rates when there are limitations to the available area. The methods investigated here significantly increased recharge rates, providing practical solutions to enhance aquifer water storage in drylands.
We describe the non-primate mammalian fauna from the late Pliocene to earliest Pleistocene deposits of Mille-Logya in the Lower Awash Valley, Ethiopia, dated to c. 2.9–2.4 Ma, and divided into three successive units: Gafura, Seraitu, and Uraitele. We identify 41 mammalian taxa (including rodents), the most diverse group being the Bovidae, with 17 taxa. While the Gafura assemblage still resembles those from the earlier Hadar Formation, the younger Seraitu assemblage documents a major turnover. While there is little change in the species present across this interval, the relative abundances of various taxa change dramatically, with suids being largely replaced by open-country bovids (Alcelaphini and Antilopini). We interpret this faunal change as reflective of an environmental shift, contemporaneous with the replacement of Australopithecus afarensis by Homo in the area. 相似文献
A large landslide (40 × 106 m3) was reactivated on the left bank of Canelles reservoir, Spain. The instability was made evident after a considerable reduction
of the reservoir level. The drawdown took place during the summer of 2006 after several years of high water levels. The drawdown
velocity reached values between 0.5 and 1.2 m/day (registered at low elevations). The paper reports the geological and geotechnical
investigations performed to define the movement. The geometry of the slip surface was established from the detailed analysis
of the continuous cores recovered in deep borings and from limited information provided by inclinometers. Deep piezometric
records provided also valuable information on the pore water pressure in the vicinity of the failure surface. These data allowed
validating a flow–deformation coupled calculation model, which takes into account the changes in water level that occurred
4 years previous to the failure as well as the average rainfall. The analysis indicates that the most likely reason for the
instability is the rapid drawdown that took place during the summer of 2006. The potential sudden acceleration of the slide
is also analysed in the paper introducing coupled thermal hydraulic and mechanical effects that may develop at the basal shearing
surface of the sliding mass. The results indicate that the slide velocity may reach values around 16 m/s when displacement
reaches 250 m. 相似文献
Gold Valley is typical of intermountain basins in Death Valley National Park (DVNP), California (USA). Using water-balance calculations, a GIS-based analytical model has been developed to estimate precipitational infiltration rates from catchment-scale topographic data (elevation and slope). The calculations indicate that groundwater recharge mainly takes place at high elevations (>1,100?m) during winter (average 1.78?mm/yr). A resistivity survey suggests that groundwater accumulates in upstream compartmentalized reservoirs and that the groundwater flows through basin fill and fractured bedrock. This explains the relationship between the upstream precipitational infiltration in Gold Valley and the downstream spring flow in Willow Creek. To verify the ability of local recharge to support high-flux springs in DVNP, a GIS-based model was also applied to the Furnace Creek catchment. The results produced insufficient total volume of precipitational infiltration to support flow from the main high-flux springs in DVNP under current climatic conditions. This study introduces a GIS-based infiltration model that can be integrated into the Death Valley regional groundwater flow model to estimate precipitational infiltration recharge. In addition, the GIS-based model can efficiently estimate local precipitational infiltration in similar intermountain basins in arid regions provided that the validity of the model is verified. 相似文献
During the Pleistocene a fauna composed of large (biomass > 44 kg) and giant mammals (biomass > 1000 kg) that are usually associated with open environments lived in the Brazilian Intertropical Region. We present here new information concerning the paleoecology and chronology of some species of this megafauna. Carbon isotope analyses were performed for a better understanding of the paleoecology of the species Eremotherium laurillardi (Lund, 1842), Notiomastodon platensis (Ameghino, 1888) and Toxodon platensis (Owen, 1849). The δ13C data allow attributing a generalist diet to these species, which varied according to the kind of habitat in which they lived. In more open habitats all species were grazers; in mixed habitats E. laurillardi and T. platensis were mixed feeders, and N. platensis was grazer; and in more closed habitats all species were mixed feeders. 相似文献