全文获取类型
收费全文 | 1202篇 |
免费 | 57篇 |
国内免费 | 22篇 |
专业分类
测绘学 | 27篇 |
大气科学 | 80篇 |
地球物理 | 357篇 |
地质学 | 415篇 |
海洋学 | 98篇 |
天文学 | 175篇 |
综合类 | 6篇 |
自然地理 | 123篇 |
出版年
2024年 | 5篇 |
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 24篇 |
2020年 | 30篇 |
2019年 | 22篇 |
2018年 | 41篇 |
2017年 | 33篇 |
2016年 | 50篇 |
2015年 | 52篇 |
2014年 | 43篇 |
2013年 | 71篇 |
2012年 | 65篇 |
2011年 | 72篇 |
2010年 | 71篇 |
2009年 | 77篇 |
2008年 | 80篇 |
2007年 | 71篇 |
2006年 | 58篇 |
2005年 | 54篇 |
2004年 | 51篇 |
2003年 | 34篇 |
2002年 | 32篇 |
2001年 | 19篇 |
2000年 | 13篇 |
1999年 | 13篇 |
1998年 | 18篇 |
1997年 | 14篇 |
1996年 | 15篇 |
1995年 | 11篇 |
1994年 | 9篇 |
1993年 | 11篇 |
1992年 | 12篇 |
1991年 | 5篇 |
1990年 | 3篇 |
1989年 | 8篇 |
1988年 | 5篇 |
1987年 | 8篇 |
1986年 | 7篇 |
1985年 | 14篇 |
1984年 | 6篇 |
1983年 | 10篇 |
1982年 | 8篇 |
1981年 | 5篇 |
1980年 | 6篇 |
1979年 | 3篇 |
1978年 | 6篇 |
1975年 | 4篇 |
1972年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有1281条查询结果,搜索用时 15 毫秒
91.
Joseph M. Delesantro Jonathan M. Duncan Diego Riveros-Iregui Joanna R. Blaszczak Emily S. Bernhardt Dean L. Urban Lawrence E. Band 《水文研究》2021,35(9):e14339
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3−-N, TDN, DOC, Cl−, and Br− concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management. 相似文献
92.
93.
94.
Jonathan P. Turner Paul F. Green Simon P. Holford Stephen R. Lawrence 《Earth and Planetary Science Letters》2008,270(3-4):354-367
We document the thermal record of breakup of the conjugate Rio Muni (West Africa) and NE Brazil margins using apatite fission track analysis, vitrinite reflectance data and stratigraphic observations from both margins. These results permit determination of the timing of four cooling episodes, and the temperature of samples at the onset of each episode. All samples are interpreted to have experienced higher temperatures in the geological past due to i) elevated basal heatflow (palaeogeothermal gradient in Rio Muni-1 well decaying from 58 °C/km during the Mid Cretaceous to 21.5 °C/km in the Late Cenozoic) and ii) progressive exhumation from formerly greater burial depth. A well constrained history of changing palaeogeothermal gradient allows for much more precise quantification of the thickness of eroded section (exhumation) than if a constant heatflow is assumed. Cooling episodes identified from the palaeotemperature data at 110–95 Ma (both margins) and 85–70 Ma (Rio Muni only) coincide with major unconformities signifying, respectively, the cessation of rifting (breakup) and compressional shortening that affected the African continent following the establishment of post-rift sedimentation (drift). The interval between these separate unconformities is occupied by allochthonous rafts of shallow-water carbonates recording gravitational collapse of a marginal platform. The rift shoulder uplift that triggered this collapse was enhanced by local transpression associated with the obliquely divergent Ascension Fracture Zone, and thermal doming due to the coeval St Helena and Ascension Plumes. The data also reveal a c.45–35 Ma cooling episode, attributed to deep sea erosion at the onset of Eo-Oligocene ice growth, and a c.15–10 Ma episode interpreted as the record of Miocene exhumation of the West African continental margin related to continent-wide plume development. Integration of thermal history methods with traditional seismic- and stratigraphy-based observations yields a dynamic picture of kilometre-scale fluctuations in base level through the breakup and early drift phases of development of these margins. Major unconformities at ocean margins are likely to represent composite surfaces recording not only eustasy, but also regional plate margin-generated deformation, local ‘intra-basinal’ reorganization, and the amplifying effect of negative feedbacks between these processes. 相似文献
95.
Gert Lube Shane J. Cronin Thomas Platz Armin Freundt Jonathan N. Procter Cargill Henderson Michael F. Sheridan 《Journal of Volcanology and Geothermal Research》2007
Small-volume pyroclastic density currents (PDCs) are generated frequently during explosive eruptions with little warning. Assessing their hazard requires a physical understanding of their transport and sedimentation processes which is best achieved by the testing of experimental and numerical models of geophysical mass flows against natural flows and/or deposits. To this end we report on one of the most detailed sedimentological studies ever carried out on a series of pristine small-volume PDC deposits from the 1975 eruption of Ngauruhoe volcano, whose emplacement were also witnessed during eruption. Using high-resolution GPS surveys, a series of lateral excavations across the deposits, and bulk sedimentological analysis we constrained the geomorphology, internal structure and texture of the deposits with respect to laterally varying modes of deposition. 相似文献
96.
Abstract The Coupled Routing and Excess STorage model (CREST, jointly developed by the University of Oklahoma and NASA SERVIR) is a distributed hydrological model developed to simulate the spatial and temporal variation of land surface, and subsurface water fluxes and storages by cell-to-cell simulation. CREST's distinguishing characteristics include: (1) distributed rainfall–runoff generation and cell-to-cell routing; (2) coupled runoff generation and routing via three feedback mechanisms; and (3) representation of sub-grid cell variability of soil moisture storage capacity and sub-grid cell routing (via linear reservoirs). The coupling between the runoff generation and routing mechanisms allows detailed and realistic treatment of hydrological variables such as soil moisture. Furthermore, the representation of soil moisture variability and routing processes at the sub-grid scale enables the CREST model to be readily scalable to multi-scale modelling research. This paper presents the model development and demonstrates its applicability for a case study in the Nzoia basin located in Lake Victoria, Africa. Citation Wang, J., Yang, H., Li, L., Gourley, J. J., Sadiq, I. K., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Limaye, A. S., Korme, T. &; Okello, L. (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 56(1), 84–98. 相似文献
97.
Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100 cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the “small-scale” or “narrow” dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently “bent over” toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1 h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1 km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. 相似文献
98.
Jonathan D. Phillips 《地球表面变化过程与地形》2009,34(1):75-87
Avulsions – relatively sudden changes in course, or establishment of new anabranches – are an important process in alluvial rivers. Their key role in floodplain construction and alluvial architecture, and the general conditions favouring avulsions, are well known. However, avulsion processes and evolution, and the factors controlling avulsion regimes, are poorly understood. In the southeast Texas coastal plain, where avulsions are common features of the river valleys, avulsions were studied on the lower Brazos, Navasota, Trinity, Neches and Sabine rivers using a combination of aerial imagery, digital elevation models and field surveys. Avulsions have important influences on the surface morphology and contemporary processes in all five rivers. Features associated with avulsions are active and distinct throughout the study area, and all the rivers have experienced geologically (if not historically) recent avulsions. However, no two of the study rivers have the same contemporary avulsion regime. First‐order differences in avulsion style are controlled by the stage of valley filling, and within the three rivers characterized by an unfilled incised valley, antecedent morphology associated with late Quaternary and Holocene coastal and fluvial‐deltaic processes accounts for the major differences. In the Navasota (27 avulsions in 185 km) and Neches (21 in 340 km) rivers, subchannels associated with avulsions exist in all stages of development from active to infilled, and some have occurred in recent decades. The other rivers have fewer avulsions, but both the Sabine and Trinity have experienced historic channel shifts. Only the Brazos River has experienced no avulsions within the past c. 300 years. Results show that even within a region of similar environmental controls and geological history local variations in inherited morphology can result in different avulsion regimes. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
99.
The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground‐based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60‐ to 61‐year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60–300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring‐fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability analyses of translational landslides should attempt to incorporate irregular basal surface topography. Additional implications for moving landslides where basal topography controls surface morphology include the following: dateable sediments or organic material from basal layers of stationary ponds will yield ages that are younger than the date of landslide initiation, and it is probable that other landslide surface features such as faults, streams, springs and sinks are also controlled by basal topography. The longitudinal topographic profile indicated that the upper part of the Slumgullion landslide was depleted at a mean vertical lowering rate of 5.6 cm/yr between 1939 and 2000, while the toe advanced at an average rate of 1.5 m/yr during the same period. Therefore, during this 61‐year period, neither the depletion of material at the head of the landslide nor continued growth of the landslide toe has decreased the overall movement rate of the landslide. Continued depletion of the upper part of the landslide, and growth of the toe, should eventually result in stabilization of the landslide. Published in 2008 by John Wiley & Sons, Ltd. 相似文献
100.