首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1156篇
  免费   72篇
  国内免费   22篇
测绘学   26篇
大气科学   79篇
地球物理   350篇
地质学   412篇
海洋学   99篇
天文学   156篇
综合类   6篇
自然地理   122篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   24篇
  2020年   30篇
  2019年   22篇
  2018年   40篇
  2017年   33篇
  2016年   49篇
  2015年   50篇
  2014年   41篇
  2013年   74篇
  2012年   65篇
  2011年   71篇
  2010年   60篇
  2009年   77篇
  2008年   79篇
  2007年   71篇
  2006年   59篇
  2005年   51篇
  2004年   51篇
  2003年   36篇
  2002年   31篇
  2001年   20篇
  2000年   13篇
  1999年   12篇
  1998年   18篇
  1997年   13篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   15篇
  1984年   6篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1250条查询结果,搜索用时 343 毫秒
991.
Sector-collapse structures ranging up to 27 km wide with up to 7.7 km bankward erosion (scalloped margins) and linear escarpments occur along the east-north-east-trending, south-facing margins of the Yangtze Platform and Great Bank of Guizhou. Exposure of one of the structures on the rotated limb of a syncline displays the geometry in profile view. Declivities range from 65° to 90° in the upper wall and decrease asymptotically to the toe. Catastrophic collapses of the margins in both platforms occurred during the late Ladinian as constrained by the ages of strata truncated along the margins and the siliciclastic turbidites that onlap collapse structures. Middle Triassic Anisian and Ladinian platform-edge reef facies and platform-interior facies were truncated along both the Yangtze and Great Bank of Guizhou margins. Lower Triassic facies were also truncated along the Great Bank of Guizhou margin. Gravity transport during the main episodes of collapse occurred as mud-rich debris-flows and as mud-free hyper-concentrated flows. Clasts, several to tens of metres and, exceptionally, hundreds of metres across, were transported to the basin. Following collapse, talus, carbonate turbidites and periplatform-mud accumulated at the toe of slope. Shedding of skeletal grains and carbonate mud indicates active carbonate factories at the margin. Preserved sections of the margins demonstrate that the platforms evolved high-relief, accretionary escarpments prior to collapse. High-relief, without buttressing by basin-filling sediments, predisposed the margins to collapse by development of tensile strain and fracturing within the margin due to the lack of confining stress. The linear geometry of margins and active tectonics in the region supports tectonic activity triggering the collapse. Collapse is thus interpreted to have been triggered by fault movement and seismic shock. Comparison with other systems indicates that evolution from high-relief accretion to tectonic collapse of largely lithified margins resulted in large sector-collapse structures and deposition of a coarse, generally mud-poor breccia apron.  相似文献   
992.
Carbonate platforms spanning intervals of global change provide an opportunity to identify causal links between the evolution of marine environment and depositional architecture. This study investigates the controls on platform geometry across the Palaeozoic to Mesozoic transition and yields new stratigraphic and palaeoenvironmental constraints on the Great Bank of Guizhou, a latest Permian to earliest Late Triassic isolated carbonate platform in the Nanpanjiang Basin of south China. Reconstruction of platform architecture was achieved by integrating field mapping, petrography, biostratigraphy, satellite imagery analysis and δ13C chemostratigraphy. In contrast to previous interpretations, this study indicates that: (i) the Great Bank of Guizhou transitioned during Early Triassic time from a low-relief bank to a platform with high relief above the basin floor (up to 600 m) and steep slope angles (preserved up to 50°); and (ii) the oldest-known platform-margin reef of the Mesozoic Era grew along steep, prograding clinoforms in an outer-margin to lower-slope environment. Increasing platform relief during Early Triassic time was caused by limited sediment delivery to the basin margin and a high rate of accommodation creation driven by Indosinian convergence. The steep upper Olenekian (upper Lower Triassic) slope is dominated by well-cemented grainstone, suggesting that high carbonate saturation states led to syndepositional or rapid post-depositional sediment stabilization. Latest Spathian reef initiation coincided with global cooling following Early Triassic global warmth. The first Triassic framework-building metazoans on the Great Bank of Guizhou were small calcareous sponges restricted to deeper water settings, but early Mesozoic reef builders were volumetrically dominated by Tubiphytes, a fossil genus of uncertain taxonomic affinity. In aggregate, the stratigraphic architecture of the Great Bank of Guizhou records sedimentary response to long-term environmental and biological recovery from the end-Permian mass extinction, highlighting the close connections among marine chemistry, marine ecosystems and carbonate depositional systems.  相似文献   
993.
Our understanding of the timing of human arrival to the Americas remains fragmented, despite decades of active research and debate. Genetic research has recently led to the ‘Beringian standstill hypothesis’ (BSH), which suggests an isolated group of humans lived somewhere in Beringia for millennia during the Last Glacial, before a subgroup migrated southward into the American continents about 14 ka. Recently published organic geochemical data suggest human presence around Lake E5 on the Alaskan North Slope during the Last Glacial; however, these biomarker proxies, namely faecal sterols and polycyclic aromatic hydrocarbons (PAHs), are relatively novel and require replication to bolster their support of the BSH. We present new analyses of these biomarkers in the sediment archive of Burial Lake (latitude 68°26′N, longitude 159°10′W m a.s.l.) in northwestern Alaska. Our analyses corroborate that humans were present in Beringia during the Last Glacial and that they likely promoted fire activity. Our data also suggest that humans coexisted with Ice Age megafauna for millennia prior to their eventual extinction at the end of the Last Glacial. Lastly, we identify fire as an overlooked ecological component of the mammoth steppe ecosystem.  相似文献   
994.
995.
The role of biomechanical effects of trees (BETs) in ecosystem and landscape dynamics is poorly understood. In this study, we aim to (i) describe a widely applicable methodology for quantifying the main BETs in soil, and (ii) analyze the actual frequencies, areas and soil volumes associated with these effects in a mountain temperate old‐growth forest. The research took place in the Boubínský Primeval Forest in the Czech Republic; this forest reserve, predominated by Fagus sylvatica L. and Picea abies (L.) Karst., is among the oldest protected areas in Europe. We evaluated the effects of 4000 standing and lying trees in an area of 10.2 ha from the viewpoint of the following features: tree uprooting, root mounding, bioprotection, trunk baumsteins (rock fragments displaced by trunk growth), root baumsteins, stump hole infilling, trunk and root systems displacements, depressions formed after trunk fall, stemwash, and trunkwash. BETs were recorded in 59% of standing and 51% of lying dead trees (excluding the pervasive soil displacement by thickening trunks and roots and the infilling of decayed stumps). Approximately one tenth of the trees showed simultaneous bioprotective and bioerosion effects. Different tree species and size categories exhibited significantly different biomechanical effects. A bioprotective function was the most frequent phenomenon observed, while treethrows prevailed from the viewpoint of areas and soil volumes affected. The total area influenced by the BETs was 342 m2 ha?1. An additional 774 m2 ha?1 were occupied by older treethrow pit‐mounds with already decayed uprooted trunks. The total volume of soil associated with the studied phenomena was 322 m3 ha?1, and apart from treethrows, volumes of the living and decaying root systems and bioprotective functions predominated. Other processes were not so frequent but still significant for biogeomorphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
996.
The feasibility of a potential bioindicator based on functional groups of microzooplankton tintinnids for bioassessments of water quality status was studied during southwest monsoon (June to September) along the coastal waters of Kalpakkam, India during 2012–2015. The work highlights the following features (1) tintinnid community composed of 28 species belonging to 11 genera and 9 families, revealed significant differences among the four study sites (2) maximum numerical abundance (2224 ± 90 ind. l? 1) and species diversity (H′ = 2.66) of tintinnid were recorded towards Bay of Bengal whereas minimum abundance (720 ± 35 ind. l? 1) and diversity (H′ = 1.74) were encountered in the backwater sites, (3) multivariate analyses [RELATE, Biota-environment (BIOENV) and canonical analysis of principal coordinates (CAP)] reveal that chl a, nitrate and phosphate were the potential causative factors for tintinnid distribution. Based on the results, we suggest that tintinnids may be used as a potential bioindicator of water quality status in marine ecosystem.  相似文献   
997.
The state of an Earth surface system (ESS) is determined by three sets of factors: laws, place, and history. Laws ( L = L1, L2, . . . , Ln) are the n general principles applicable to any such system at any time. Place factors ( P = P1, P2, . . . , Pm) are the m relevant characteristics of the local or regional environment. History factors ( H = H1 , H2, . . . , Hq) include the previous evolutionary pathway of the ESS, its stage of development, past disturbance, and initial conditions. Geoscience investigation may focus on laws, place, or history, but ultimately all three are necessary to understand and explain ESS. The LPH triad is useful as a pedagogical device, illustrated here via application to explaining the world's longest cave (Mammoth Cave, KY). Beyond providing a useful checklist, the LPH framework provides analytical traction to some difficult research problems. For example, studies of the avulsions of three southeast Texas rivers showed substantial differences in avulsion regimes and resulting alluvial morphology, despite the proximity and superficial similarity of the systems. Avulsions are governed by the same laws in all cases [ L (A) = L (B) = L (C)], and the three rivers have undergone the same sea‐level, climate, and tectonic histories, as well as the same general anthropic impacts [ H (A) ≈ H (B) ≈ H (C)]. Though regional environmental controls are similar, local details such as the location of the modern main channel relative to Pleistocene meander channels differ, and thus these place factors explain the differences between the rivers. The LPH framework, or similar types of reasoning, is implicit in many types of geoscience analysis. Explicit attention to the triad can help solve or address many specific problems and remind us of the importance of all three sets of factors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
998.
Biogeomorphic keystone species profoundly impact landscapes, such that their introduction or removal would cause fundamental changes in geomorphic systems. This paper explores the concept of biogeomorphic keystone species by examining the general vs. species-specific biogeomorphic impacts (BGIs) of trees on a limestone bedrock-controlled stream, Shawnee Run, in central Kentucky. Field investigation identified three strong BGIs: (i) biogeomorphic pool formation via bioweathering; (ii) root bank-associated bioprotection; and (iii) avulsion-originated island development linked to bioprotection. This research evaluates these impacts in the context of keystone or other biogeomorphic roles. A field survey was conducted on nine stream reaches, each consisting of 10–12 hydraulic units of riffle, pool, and run. Results suggest that American sycamore (Platanus occidentalis) plays a keystone role by promoting the development of ~42% of pools in the study area. While geomorphic pools are formed by fluvial process–form linkages, these biogeomorphic pools are developed by sycamore root-induced channel bed bioweathering. Only American sycamore and chinquapin oak (Quercus muehlenbergii) exhibited root-bank development amongst 15 different species identified – and thus play a vital role in bank bioprotection. Lastly, trees can promote avulsion-originated island formation by creating erosion-resistant bioprotective patches. Mature trees (in terms of size), particularly large American sycamore and chinquapin oak, dominate Shawnee Run islands with a mean diameter at breast height (DBH) > 40 cm. However, other trees can provide comparable bioprotection, particularly at mature stages. Because its absence would result in fundamentally different stream morphology, sycamore can be considered a biogeomorphic keystone species in Shawnee Run. © 2020 John Wiley & Sons, Ltd.  相似文献   
999.
1000.
Parametric system identification is used to evaluate seismic soil–structure interaction effects in buildings. The input–output strong motion data pairs needed for evaluations of flexible- and fixed-base fundamental mode parameters are derived. Recordings of lateral free-field, foundation, and roof motions, as well as foundation rocking, are found to be necessary for direct evaluations of modal parameters for both cases of base fixity. For the common situation of missing free-field or base rocking motions, procedures are developed for estimating the modal parameters that cannot be directly evaluated. The accuracy of these estimation procedures for fundamental mode vibration period and damping is verified for eleven sites with complete instrumentation of the structure, foundation, and free-field. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号